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About Chinese science before opium wars see Needham Research Institute
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Homo sapiens success

Cognitive niche hypothesis

Well-adapted tools, beliefs, and practices are too complex for any single
individual to invent during their lifetime even in hunter-gatherer societies

Too complex to be alone
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Cultural niche hypothesis

Humans accumulate, process and transmit knowledge across
generations, leading to a cultural evolution process in which tools,

beliefs, and practices arise as emergent properties of the social system.

See Boyd, Richerson, Henrich The cultural niche: Why social learning is essential for human adaptation

Cultural niche hypothesis

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131818/
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Homo sapiens success

Cultural evolution

We owe our success to our ability to learn from others (social learning)

Books: Culture and the Evolutionary Process – Origine and Evolution of Cultures – Mathematical Models of Social Evolution.

Cultural evolution

http://gen.lib.rus.ec/book/index.php?md5=6710E07B17070B3835AB04A495F1EB1B
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• Which are the effects of social learning strategies
over individual skill acquisition?

• How social learning factors alter learning
expected by the individual experience?

To answer them, we need a methodology
to measure skill over time

Social learning
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Bayesian inference

Allows us to optimally update a priori beliefs
given a model and data.

Why Bayesian inference?

Books: Bayesian data analysis – Bayesian Cognitive Modeling: A Practical Course

http://library1.org/_ads/F3FE830B1D068B5F1A7F3C66227F935E
http://library1.org/_ads/1263135742DA260290C3CE04C1F88546
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Bayesian inference

Conditional probability

Not infected Infected

Not vaccinated 4 2 6

Vaccinated 76 18 94

80 20 100

From conditional probability

P (Not infected|Vaccinated) =
P (Vaccinated ∩ Not infected)

P (Vaccinated)

Bayes theorem:

P (A1|B1) =
P (B1 ∩A1)

P (B1)
=
P (B1|A1)P (A1)

P (B1)
(1)

Where comes from?
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Bayesian inference

Scientific test example

There is a test that correctly detects zombies 95% of the time.
• P (positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.
• P (positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.
• P (zombie) = 0.001

Someone receive a positive test:
She has only 8.7% chance to actually be a zombie!?

P (zombie|positive) =
P (positive|zombie)P (zombie)

P (positive)

In this example all frequencies were observables

Scientific test example
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Bayesian inference

The inferential jump

Bayesian inference is about hidden variables
About our belief distributions of those hidden variables!

P (Belief|Data)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (Data|Belief)

Prior︷ ︸︸ ︷
P (Belief)

P (Data)︸ ︷︷ ︸
Evidence or

Average likelihood

A model is always there!

P (Belief|Data,Model)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (Data|Belief,Model)

Prior︷ ︸︸ ︷
P (Belief|Model)

P (Data|Model)︸ ︷︷ ︸
Evidence or

Average likelihood

The inferential jump
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Bayesian inference

The inferential jump

• Prior belief (distribution):

P (B|M) =
1

#Beliefs
∀B ∈ Beliefs

• Likelihood or ways in which data may have been generated (distribution):

P (D|B,M) =
Ways to produce D given B and M

Total ways given B and M
∀B ∈ Beliefs

• Evidence or Average likelihood (scalar):

P (D|M) =
∑

B∈Beliefs

P (D|B,M)︸ ︷︷ ︸
likelihood

P (B|M)︸ ︷︷ ︸
prior

• Posterior belief (distribution):

P (B|D,M) =
P (D|B,M)P (B|M)

P (D|M)
∀B ∈ Beliefs
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Bayesian inference

The garden of forking paths

To update our beliefs (posterior), we need to consider every possible path
in the model that could have lead us to the observed data (likelihood).

The garden of forking paths
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Bayesian skill estimator

How to estimate skill of players?

Arpad Elo

Bayesian skill estimator
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rabObserved result

r = I(pa > pb)

pa pbHidden performance

p ∼ N(s, β2)

sa sbHidden skill

s ∼ N(µ̂, σ̂2)

}
Belief

distirbution




Model

}
Data

1

The factor graphs specifies the way to compute the posterior, likelihood, and evidence.
Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. 2001

Bayesian Elo factor graph

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=910572
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Posterior︷ ︸︸ ︷
P (sa | rab,Elo model) ∝

Prior︷ ︸︸ ︷
N(sa | µ̂a, σ̂2

a)

Likelihood︷ ︸︸ ︷
1− Φ(sa |µ̂b, 2β2 + σ̂2

b ) Win case
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For a detailed demostration, see Landfried. TrueSkill: Technical Report. 2019

https://journals.plos.org/plosone/article/file?type=supplementary&id=info:doi/10.1371/journal.pone.0211014.s002
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Could we detect social learning factors?

We have a lot of information available on the internet

Could we detect social learning factors?
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Could we detect social learning factors?

Database

We set to investigate the impact of team play strategies on skill
acquisition in Conquer Club

Database
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Could we detect social learning factors?

Team oriented behavior

What is a better strategy?
Play in teams or individually?

Team oriented behavior
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Could we detect social learning factors?

Loyal and causal teammates

What is a better strategy?
Repeat or vary teammates?

See paper: Landfried Faithfulness-boost effect: Loyal teammate selection correlates with skill acquisition
improvement in online games. 2019.

Loyal and causal teammates

https://journals.plos.org/plosone/article/comments?id=10.1371/journal.pone.0211014
https://journals.plos.org/plosone/article/comments?id=10.1371/journal.pone.0211014
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