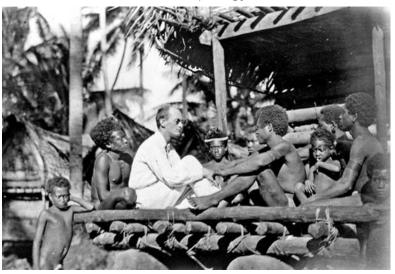


Cultural evolution and social learning

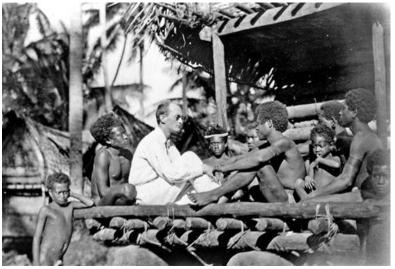
Gustavo Landfried

MSc in Anthropological Sciences PhD student in Computer Sciences

Anthropology



Anthropology



For a comprehensive, non-eurocentric, history of society see Enrique Dussel (Ecuador, Chile)

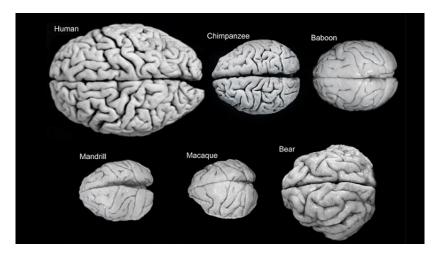
About Chinese science before opium wars see Needham Research Institute

Homo sapiens success



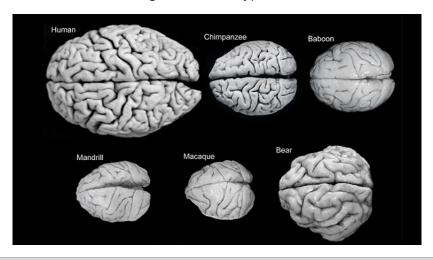
Cognitive niche hypothesis

Cognitive niche hypothesis



Cognitive niche hypothesis

Cognitive niche hypothesis



Our success is often explained in terms of our cognitive ability

Cognitive niche hypothesis

Too complex to be alone

Well-adapted tools, beliefs, and practices are too complex for any single individual to invent during their lifetime even in hunter-gatherer societies

Cultural niche hypothesis

Humans accumulate, process and transmit knowledge across generations, leading to a cultural evolution process in which tools, beliefs, and practices arise as emergent properties of the social system.

Cultural niche hypothesis

Humans accumulate, process and transmit knowledge across generations, leading to a cultural evolution process in which tools, beliefs, and practices arise as emergent properties of the social system. Cultural evolution

Cultural evolution

We owe our success to our ability to learn from others (social learning)

Cultural evolution and social learning
Homo sapiens success

Cultural evolution

Cultural evolution

We owe our success to our ability to learn from others (social learning)

Books: Culture and the Evolutionary Process - Origine and Evolution of Cultures - Mathematical Models of Social Evolution.

Social learning

• Which are the effects of social learning strategies over individual skill acquisition?

Social learning

- Which are the effects of social learning strategies over individual skill acquisition?
 - How social learning factors alter learning expected by the individual experience?

Social learning

- Which are the effects of social learning strategies over individual skill acquisition?
 - How social learning factors alter learning expected by the individual experience?

To answer them, we need a methodology to measure skill over time

Why Bayesian inference?

Allows us to optimally update a priori beliefs given a model and data.

Where comes from?

	Not infected	Infected	
Not vaccinated	4	2	6
Vaccinated	76	18	94
	80	20	100

From conditional probability

Where comes from?

	Not infected	Infected	
Not vaccinated	4	2	6
Vaccinated	76	18	94
	80	20	100

From conditional probability

$$P(\mathsf{Not\ infected}|\mathsf{Vaccinated}) = \frac{P(\mathsf{Vaccinated} \cap \mathsf{Not\ infected})}{P(\mathsf{Vaccinated})}$$

Where comes from?

	Not infected	Infected	
Not vaccinated	4	2	6
Vaccinated	76	18	94
	80	20	100

From conditional probability

$$P(\mathsf{Not\ infected}|\mathsf{Vaccinated}) = \frac{P(\mathsf{Vaccinated} \cap \mathsf{Not\ infected})}{P(\mathsf{Vaccinated})}$$

Bayes theorem:

$$P(A_1|B_1) = \frac{P(B_1 \cap A_1)}{P(B_1)} = \frac{P(B_1|A_1)P(A_1)}{P(B_1)}$$
(1)

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

 $\bullet \ P(\mathsf{zombie}) = 0.001$

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

• $P(\mathsf{zombie}) = 0.001$

Someone receive a positive test:

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

• $P(\mathsf{zombie}) = 0.001$

Someone receive a positive test: She has **only 8.7% chance** to actually be a zombie!?

$$P(\mathsf{zombie}|\mathsf{positive}) = \frac{P(\mathsf{positive}|\mathsf{zombie})P(\mathsf{zombie})}{P(\mathsf{positive})}$$

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

• $P(\mathsf{zombie}) = 0.001$

Someone receive a positive test: She has **only 8.7% chance** to actually be a zombie!?

$$P(\mathsf{zombie}|\mathsf{positive}) = \frac{P(\mathsf{positive}|\mathsf{zombie})P(\mathsf{zombie})}{P(\mathsf{positive})}$$

In this example all frequencies were observables

The inferential jump

Bayesian inference is about hidden variables
About our belief distributions of those hidden variables!

The inferential jump

Bayesian inference is about hidden variables
About our belief distributions of those hidden variables!

$$\underbrace{P(\mathsf{Belief}|\mathsf{Data})}_{\mathsf{Posterior}} = \underbrace{\frac{\mathsf{Likelihood}}{P(\mathsf{Data}|\mathsf{Belief})} \underbrace{\frac{\mathsf{Prior}}{P(\mathsf{Belief})}}_{\mathsf{Evidence or}}$$

The inferential jump

Bayesian inference is about hidden variables
About our belief distributions of those hidden variables!

$$\underbrace{P(\mathsf{Belief}|\mathsf{Data})}_{\mathsf{Posterior}} = \underbrace{\frac{P(\mathsf{Data}|\mathsf{Belief})}{P(\mathsf{Data}|\mathsf{Belief})}}_{\substack{Evidence \text{ or } \\ \mathsf{Average likelihood}}} \underbrace{\frac{P\mathsf{rior}}{P(\mathsf{Data})}}_{\substack{\mathsf{Evidence or } \\ \mathsf{Average likelihood}}}$$

A model is always there!

$$\underbrace{P(\mathsf{Belief}|\mathsf{Data},\mathsf{Model})}_{\mathsf{Posterior}} = \underbrace{\frac{\mathsf{Likelihood}}{P(\mathsf{Data}|\mathsf{Belief},\mathsf{Model})} \underbrace{P(\mathsf{Belief}|\mathsf{Model})}_{\mathsf{Evidence}} \underbrace{\frac{P(\mathsf{Data}|\mathsf{Model})}{P(\mathsf{Data}|\mathsf{Model})}}_{\mathsf{Average}}$$

└─The inferential iump

• Prior belief (distribution):

$$P(B|M) = \frac{1}{\# \mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

• Prior belief (distribution):

$$P(B|M) = \frac{1}{\# \mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

• Likelihood or ways in which data may have been generated (distribution):

$$P(D|B,M) = \frac{\text{Ways to produce } D \text{ given } B \text{ and } M}{\text{Total ways given } B \text{ and } M} \qquad \forall B \in \text{Beliefs}$$

• Prior belief (distribution):

$$P(B|M) = \frac{1}{\# \mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

• Likelihood or ways in which data may have been generated (distribution):

$$P(D|B,M) = \frac{\text{Ways to produce } D \text{ given } B \text{ and } M}{\text{Total ways given } B \text{ and } M} \qquad \forall B \in \text{Beliefs}$$

• Evidence or Average likelihood (scalar):

$$P(D|M) = \sum_{B \in \mathsf{Beliefs}} \underbrace{P(D|B,M)}_{\mathsf{likelihood}} \underbrace{P(B|M)}_{\mathsf{prior}}$$

• Prior belief (distribution):

$$P(B|M) = \frac{1}{\# \mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

• Likelihood or ways in which data may have been generated (distribution):

$$P(D|B,M) = \frac{\text{Ways to produce } D \text{ given } B \text{ and } M}{\text{Total ways given } B \text{ and } M} \qquad \forall B \in \text{Beliefs}$$

• Evidence or Average likelihood (scalar):

$$P(D|M) = \sum_{B \in \mathsf{Beliefs}} \underbrace{P(D|B,M)}_{\mathsf{likelihood}} \underbrace{P(B|M)}_{\mathsf{prior}}$$

Posterior belief (distribution):

$$P(B|D,M) = \frac{P(D|B,M)P(B|M)}{P(D|M)} \qquad \forall B \in \mathsf{Beliefs}$$

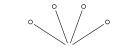
To update our beliefs (posterior), we need to consider every possible path in the model that could have lead us to the observed data (likelihood).

The garden of forking paths

Model (M): Data $\sim \mathsf{Binomial}(n,p)$

 $\mathsf{Data}\;(\mathsf{D}) \colon \bullet \circ \bullet \qquad \mathsf{Beliefs}\;(\mathsf{B}) \colon \circ \circ \circ \circ, \bullet \circ \circ \circ, \bullet \bullet \circ \circ, \bullet \bullet \bullet \circ$

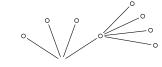
Model (M): Data \sim Binomial(n, p)



Ways given M and $B=\circ\circ\circ\circ$

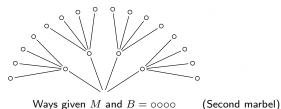
(First marbel)

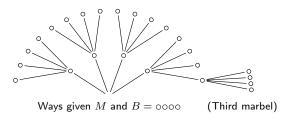
Model (M): Data \sim Binomial(n, p)



Ways given M and B = 0000 (Second marbel)

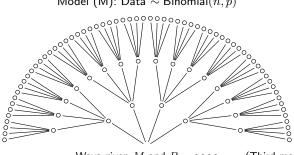
Model (M): Data \sim Binomial(n, p)





Data (D): ● ○ ● Beliefs (B): 0000, ●000, ●●00, ●●●0, ●●●

Model (M): Data \sim Binomial(n, p)

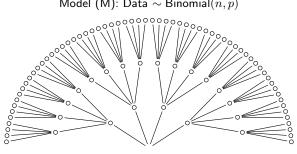


Ways given M and B = 0000

(Third marbel)

Data (D): ● ○ ● Beliefs (B): 0000, ●000, ●●00, ●●●0, ●●●

Model (M): Data \sim Binomial(n, p)

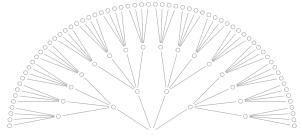


Ways given M and B = 0000

Belief Ways to produce ● ○ ●

0000

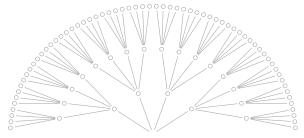
 $\mathsf{Data}\;(\mathsf{D}) \colon \bullet \circ \bullet \qquad \mathsf{Beliefs}\;(\mathsf{B}) \colon \circ \circ \circ \circ, \bullet \circ \circ \circ, \bullet \bullet \bullet \circ, \bullet \bullet \bullet \bullet$



Ways given M and $B=\circ\circ\circ\circ$

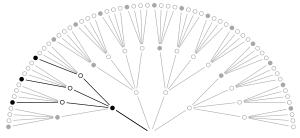
Belief	Ways to produce ● ○ ●
0000	$0 \times 4 \times 0 = 0$

 $\mathsf{Data}\;(\mathsf{D}) \colon \bullet \circ \bullet \qquad \mathsf{Beliefs}\;(\mathsf{B}) \colon \circ \circ \circ \circ, \bullet \circ \circ \circ, \bullet \bullet \bullet \circ, \bullet \bullet \bullet \bullet$



Ways given M and B = 0000

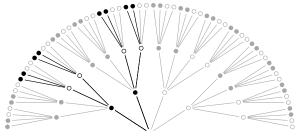
Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$



Ways given M and $B=\bullet \circ \circ \circ$

Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$
●000	$1\times 3\times 1=3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$

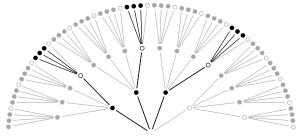
The garden of forking paths



Ways given M and $B = \bullet \bullet \circ \circ$

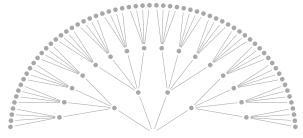
Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior ∞
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$

The garden of forking paths



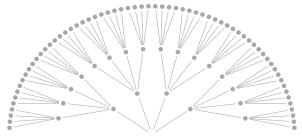
Ways given M and $B=\bullet \bullet \bullet \circ$

Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior ∞
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\begin{array}{r} \frac{0}{64} \frac{1}{5} \\ \frac{3}{64} \frac{1}{5} \end{array}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$
•••0	$3\times1\times3=9$	9/64	1/5	$\frac{9}{64} \frac{1}{5}$



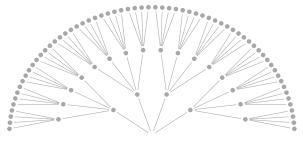
Ways given M and $B=\bullet \bullet \bullet \bullet$

Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior ∞
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\begin{array}{r} \frac{0}{64} \frac{1}{5} \\ \frac{3}{64} \frac{1}{5} \end{array}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$
•••0	$3\times1\times3=9$	9/64	1/5	$\frac{9}{64} \frac{1}{5}$
••••	$4\times 0\times 4=0$	0/64	1/5	$\frac{0}{64} \frac{1}{5}$



Ways given M and $B=\bullet \bullet \bullet \bullet$

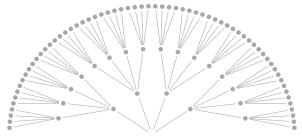
Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior ∞
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64} \frac{1}{5}$
••••	$4\times 0\times 4=0$	0/64	1/5	$\frac{0}{64} \frac{1}{5}$
				P(D M)



Ways given M and $B = \bullet \bullet \bullet \bullet$

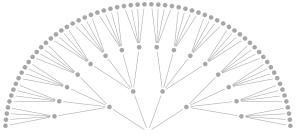
Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64} \frac{1}{5}$
••••	$4\times 0\times 4=0$	0/64	1/5	$\frac{0}{64} \frac{1}{5}$
				3+8+9 64·5

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ$, $\bullet \circ \circ \circ$, $\bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ$



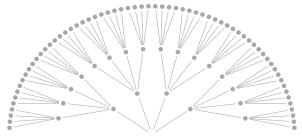
Ways given M and $B = \bullet \bullet \bullet \bullet$

Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior ∞	Posterior
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$	$\frac{0}{64} \frac{1}{5} \frac{64.5}{3+8+9}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$	
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$	
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64} \frac{1}{5}$	
••••	$4\times 0\times 4=0$	0/64	1/5	$\frac{0}{64} \frac{1}{5}$	
				$\frac{3+8+9}{64\cdot 5}$	



Ways given M and $B = \bullet \bullet \bullet \bullet$

Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior ∞	Posterior
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$	$\frac{0}{3+8+9} = 0.00$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$	
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$	
$\bullet \bullet \bullet \circ$	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64} \frac{1}{5}$	
••••	$4\times 0\times 4=0$	0/64	1/5	$\frac{0}{64} \frac{1}{5}$	
				$\frac{3+8+9}{64\cdot 5}$	



Ways given M and $B = \bullet \bullet \bullet \bullet$

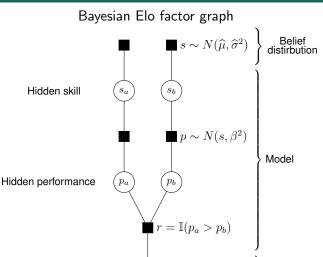
Belief	Ways to produce ● ○ ●	Likelihood	Prior	Posterior \propto	Posterior
0000	$0 \times 4 \times 0 = 0$	$\frac{0\times4\times0}{4\times4\times4} = \frac{0}{64}$	1/5	$\frac{0}{64} \frac{1}{5}$	$\frac{0}{3+8+9} = 0.00$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64} \frac{1}{5}$	$\frac{3}{3+8+9} = 0.15$
••00	$2\times2\times2=8$	8/64	1/5	$\frac{8}{64} \frac{1}{5}$	$\frac{8}{3+8+9} = 0.40$
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64} \frac{1}{5}$	$\frac{9}{3+8+9} = 0.45$
••••	$4 \times 0 \times 4 = 0$	0/64	1/5	$\frac{0}{64} \frac{1}{5}$	$\frac{0}{3+8+9} = 0.00$
				$\frac{3+8+9}{64\cdot 5}$	

Bayesian skill estimator

How to estimate skill of players?

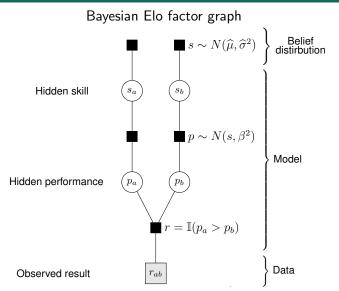
Arpad Elo

Observed result



 r_{ab}

Data



The factor graphs specifies the way to compute the posterior, likelihood, and evidence. Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. 2001

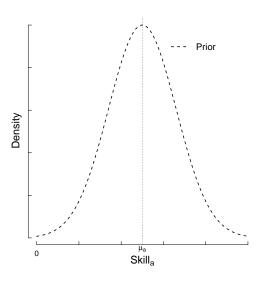
Cultural evolution and social learning

Bayesian inference

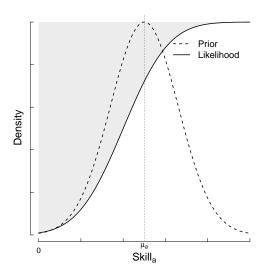
Bayesian skill estimator

$$\underbrace{P(s_a \mid r_{ab}, \text{Elo model})}_{\text{Posterior}} \propto \underbrace{N(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)}_{\text{Prior}} \underbrace{1 - \Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}_{\text{Unifor}} \qquad \text{Win case}$$

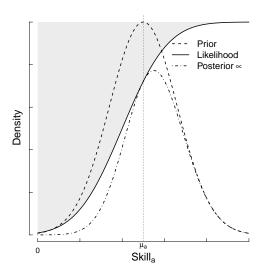
$$\underbrace{P(s_a \mid r_{ab}, \text{Elo model})}_{\text{Posterior}} \propto \underbrace{N(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)}_{\text{Prior}} \underbrace{1 - \Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}_{\text{Um case}} \quad \text{Win case}$$



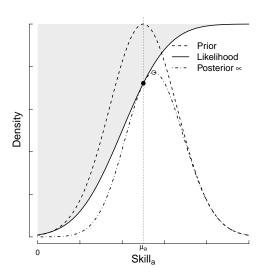
$$\underbrace{P(s_a \mid r_{ab}, \text{Elo model})}_{\text{Posterior}} \propto \underbrace{N(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)}_{\text{Prior}} \underbrace{1 - \Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}_{\text{Un case}} \qquad \text{Win case}$$



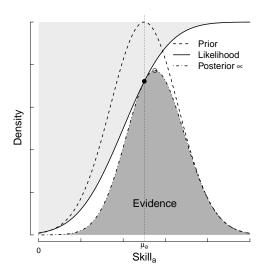
$$\overbrace{P(s_a \mid r_{ab}, \mathsf{Elo} \; \mathsf{model})}^{\mathsf{Posterior}} \propto \overbrace{N(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)}^{\mathsf{Prior}} \underbrace{1 - \Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}^{\mathsf{Likelihood}} \qquad \mathsf{Win \; case}$$



$$\underbrace{P(s_a \mid r_{ab}, \text{Elo model})}_{\text{Posterior}} \propto \underbrace{N(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)}_{\text{Prior}} \underbrace{1 - \Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}_{\text{Uniform case}} \qquad \text{Win case}$$



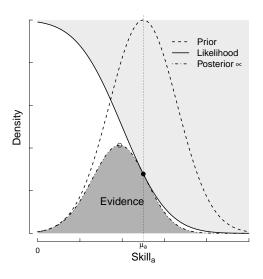
$$\underbrace{P(s_a \mid r_{ab}, \text{Elo model})}_{\text{Posterior}} \propto \underbrace{N(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)}_{\text{Posterior}} \underbrace{1 - \Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}_{\text{Un case}} \quad \text{Win case}$$



Bayesian skill estimator

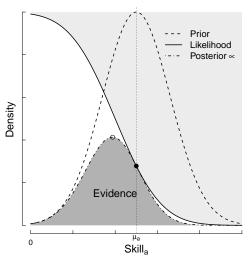
$$\underbrace{P(s_a \mid r_{ab}, \mathsf{Elo} \; \mathsf{model})}_{\mathsf{P}(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)} \underbrace{\frac{\mathsf{Likelihood}}{\Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}}_{\mathsf{Likelihood}}$$

Loose case



Bayesian skill estimator

$$\underbrace{P(s_a \mid r_{ab}, \mathsf{Elo} \; \mathsf{model})}_{\mathsf{P}(s_a \mid r_{ab}, \mathsf{Elo} \; \mathsf{model})} \propto \underbrace{N(s_a \mid \widehat{\mu}_a, \widehat{\sigma}_a^2)}_{\mathsf{P}(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)} \underbrace{\Phi(s_a \mid \widehat{\mu}_b, 2\beta^2 + \widehat{\sigma}_b^2)}_{\mathsf{Likelihood}} \qquad \mathsf{Loose} \; \mathsf{case}$$



For a detailed demostration, see Landfried. TrueSkill: Technical Report. 2019

Could we detect social learning factors?

We have a lot of information available on the internet

Cultural evolution and social learning
Could we detect social learning factors?
Database

Database



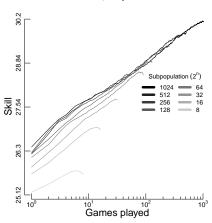
We set to investigate the impact of team play strategies on skill acquisition in Conquer Club

Cultural evolution and social learning
Could we detect social learning factors?
Law of practice

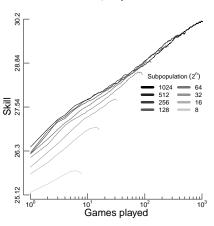
Law of practice

 $Skill = Skill_0 Experience^{\alpha}$

Law of practice



Law of practice



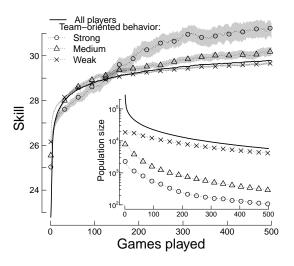
Learning by individual experience is always linear in log-log scale

Cultural evolution and social learning
Could we detect social learning factors?
Team oriented behavior

Team oriented behavior

What is a better strategy? Play in teams or individually?

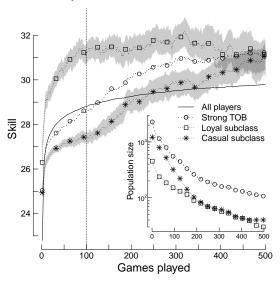
Team oriented behavior



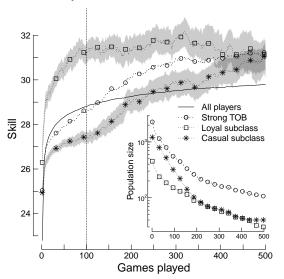
Loyal and causal teammates

What is a better strategy? Repeat or vary teammates?

Loyal and causal teammates



Loyal and causal teammates



See paper: Landfried Faithfulness-boost effect: Loyal teammate selection correlates with skill acquisition improvement in online games. 2019.

