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Definición

Un grafo G = (V ,E ) es arco-circular si existe una familia de arcos
A = {A1, · · · ,An} sobre un ćırculo C tal que G es el grafo
intersección de A, es decir que, V = {v1, · · · , vn} donde cada vi
corresponde al arco Ai y la arista (vi , vj) ∈ E ⇔ i 6= j ∧
Ai ∩ Aj 6= ∅. En tal caso, (A,C ) es un modelo o representación
arco-circular de G .

Observación: Todo grafo de intervalos es arco-circular y no es
cierta la vuelta, por ejemplo los Ck inducido con k ≥ 4.

Teorema
Dado G = (V ,E ) un grafo arco-cicular si y sólo si existe un orden
circular σ = [v1, · · · , vn] de los vértices de V de manera tal que si
(vi , vj) ∈ E entonces vi+1, · · · , vj ∈ N(vi ) ∨ vj+1, · · · , vi ∈ N(vj).



I ⇒) Sea (A,C ) un modelo arco-circular de G y
A1 = (s1, t1), · · · ,An = (sn, tn) los arcos de A ordenados por
el extremo de comienzo. Sea [v1, · · · , vn] el orden circular de
los vértices donde vi corresponde a Ai . Si (vi , vj) ∈ E
entonces Ai ∩ Aj 6= ∅, lo cual quiere decir que sj ∈ Ai o
si ∈ Aj . En el primer caso, si+1, · · · , sj ∈ Ai y por lo tanto,
vi+1, · · · , vj ∈ N(vi ). En el último caso, sj+1, · · · , si ∈ Aj y
vj+1, · · · , vi ∈ N(vj).

I ⇐) Sea σ = [v1, · · · , vn], el orden circular que cumple la
hipótesis, un ε < π

10000n positivo y pi = 2iπ
n para 1 ≤ i ≤ n,

los n puntos de un ćırculo C . Para cada vi , buscar en el orden
circular a partir de vi+1, el primer vértice vj no adyacente a vi
(en el peor de los casos j = i) y definir Ai = (pi + ε, pj − iε).
Si (vi , vj) /∈ E entonces sj = pj + ε /∈ Ai y si = pi + ε /∈ Aj ,
por lo cual Ai ∩ Aj = ∅. Si (vi , vj) ∈ E entonces
vi+1, · · · , vj ∈ N(vi ) ∨ vj+1, · · · , vi ∈ N(vj). En el primer
caso, sj = pj + ε ∈ Ai . En el último caso, si = pi + ε ∈ Aj . En
cualquier caso,Ai ∩ Aj 6= ∅.



Reconocimiento

I La caraterización anterior no conduce a un algoritmo de
reconocimiento de tiempo polinomial.

I O(n3) Alan Tucker. An Efficient Test for Circular-Arc Graphs.
SIAM Journal on Computing, 1980.

I O(mn) Wen-Lian Hsu. O(mn) Algorithms for the Recognition
and Isomorphism Problems on Circular-Arc Graphs. SIAM
Journal on Computing, 1995.

I O(n2) Elaine M. Eschen, Jeremy Spinrad. An O(n2)
Algorithm for Circular-Arc Graph Recognition. Proc. 4th
Annual ACM-SIAM Symposium on Discrete Algorithms, 1993.

I O(n + m) Ross M. McConnell. Linear-Time Recognition of
Circular-Arc Graphs. Proc. 42nd Annual Symposium on
Foundations of Computer Science, 2001.

I O(n + m) Haim Kaplan, Yahav Nussbaum. A simpler
linear-time recognition of circular-arc graphs. Proc. 10th
Scandinavian Workshop on Algorithm Theory, 2006.



Subclases (¿son hereditarias?)

Dado un modelo arco-circular (A,C ) y G su grafo de intersección.

I Si no existen 2 arcos Ai ,Aj ∈ A tal que Ai ∪ Aj = C entonces
este modelo es normal y G es un grafo arco-circular normal.

I Si no existen 2 arcos Ai ,Aj ∈ A tal que Ai ⊂ Aj entonces este
modelo es propio y G es un grafo arco-circular propio.

I Si todos los arcos de A tienen la misma longitud entonces
este modelo es unitario y G es un grafo arco-circular unitario.

I Si A cumple propiedad de Helly entonces este modelo es Helly
y G es un grafo arco-circular Helly.

Observaciones

I Todo grafo de intervalos es grafo arco-circular Helly.

I Todo modelo arco-circular unitario es arco-circular propio.

I Todo grafo arco-circular propio es arco-circular normal.

I Un grafo arco-circular Helly G = (V ,E ) tiene a lo sumo |V |
cliques.



Teorema

Sea G = (V ,E ) un grafo. Las siguientes afirmaciones son
equivalentes.

1. G es un grafo arco-circular Helly.

2. La matriz clique M de G cumple la propiedad de 1’s circular
por columnas que es lo mismo decir que se pueden ordenar
circularmente los cliques de G de manera tal que para cada
vértice v ∈ V , los cliques que lo contienen están en forma
consecutiva en este orden circular.

Observación: ¿Cuántos 1’s puede tener la matriz clique de un
grafo arco-circular Helly G = (V ,E )?
Reconocimiento: O(n3) F. Gavril. Algoritms on Circular-Arc
Graphs. Networks, 1974.
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Abstract. A circular-arc model (C, A) is a circle C together with a col-
lection A of arcs of C. If A satisfies the Helly Property then (C, A) is a
Helly circular-arc model. A (Helly) circular-arc graph is the intersection
graph of a (Helly) circular-arc model. Circular-arc graphs and their sub-
classes have been the object of a great deal of attention, in the literature.
Linear time recognition algorithm have been described both for the gen-
eral class and for some of its subclasses. However, for Helly circular-arc
graphs, the best recognition algorithm is that by Gavril, whose com-
plexity is O(n3). In this article, we describe different characterizations
for Helly circular-arc graphs, including a characterization by forbidden
induced subgraphs for the class. The characterizations lead to a linear
time recognition algorithm for recognizing graphs of this class. The al-
gorithm also produces certificates for a negative answer, by exhibiting a
forbidden subgraph of it, within this same bound.
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1 Introduction

Circular-arc graphs form a class of graphs which has attracted much interest,
since its first characterization by Tucker, almost fourty years ago [9]. There
is a particular interest in the study of subclasses of it. The most common of
these subclasses are the proper circular-arc graphs, unit circular-arc graphs and
Helly circular-arc graphs (Golumbic [3]). Linear time recognition and represen-
tation algorithms have been already formulated for general circular-arc graphs
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Hell and Huang [1]) and unit circular-arc arc graphs (Lin and Szwarcfiter [6]).
For Helly circular-arc graphs, the best recognition algorithm is by Gavril [2],
which requires O(n3) time. Such an algorithm is based on characterizing Helly
circular-arc graphs, as being exactly those graphs whose clique matrices admit
the circular 1’s property on their columns [2]. The book by Spinrad [8] contains
an appraisal of circular-arc graph algorithms.

In the present article, we propose new characterizations for Helly circular-
arc graphs, including a characterization by forbidden induced subgraphs for the
class. The characterizations lead to a linear time algorithm for recognizing graphs
of the class and constructing the corresponding Helly circular-arc models. In case
a graph does not belong to the class, the method exhibits a certificate, namely
a forbbiden induced subgraph of it, also in linear time.

Let G be a graph, VG, EG its sets of vertices and edges, respectively, |VG| = n
and |EG| = m. Write e = vivj , for an edge e ∈ EG, incident to vi, vj ∈ VG. A
clique of G is a maximal subset of pairwise adjacent vertices. Denote N(vi) =
{vj ∈ VG|vivj ∈ EG}, call vj ∈ N(vi) a neighbour of vi and write and d(vi) =
|N(vi)|.

(a) (b)

Fig. 1. Two circular-arc models

A circular-arc (CA) model (C, A) is a circle C together with a collection A
of arcs of C. Unless otherwise stated, we always traverse C in the clockwise
direction. Each arc Ai ∈ A is written as Ai = (si, ti), where si, ti ∈ C are
the extreme points of Ai, with si the start point and ti the end point of the
arc, respectively, in the clockwise direction. The extremes of A are those of all
arcs Ai ∈ A. As usual, we assume that no single arc of A covers C, that no
two extremes of A coincide and that all arcs of A are open. When traversing
C, we obtain a circular ordering of the extreme points of A. Furthermore, we
also consider a circular ordering A1, . . . , An of the arcs of A, defined by the
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corresponding circular ordering s1, . . . , sn of their respective start points. In
general, when dealing with a sequence x1, . . . , xt of t objects circularly ordered,
we assume that all the additions and subtractions of the indices i of the objects
xi are modulo t. Figure 1 illustrates two CA models, with the orderings of their
arcs.

(a) (b)

Fig. 2. Two minimally non Helly models

In a model (C, A), the complement of an arc Ai = (si, ti) is the arc Ai =
(ti, si). Complements of arcs have been employed before by McConnell [7], under
the name arc flippings. The complement of (C, A) is the model (C, A), where
A = {Ai|Ai ∈ A}.

In the model (C, A), a subfamily of arcs of A is intersecting when they pairwise
intersect. Say that A is Helly, when every intersecting subfamily of it contains
a common point of C. In this case, (C, A) is a Helly circular-arc (HCA) model.
When A is not Helly, it contains a minimal non Helly subfamily A′, that is A′ is
not Helly, but A′ \Ai is so, for any Ai ∈ A′. The model (C, A′) is then minimally
non HCA. Figure 2 depicts two minimally non Helly models.

A circular-arc (CA) graph G is the intersection graph of some CA model
(C, A). Denote by vi ∈ VG the vertex of G corresponding to Ai ∈ A. Similarly,
a Helly circular-arc (HCA) graph is the intersection graph of some HCA model.
In a HCA graph, each clique Q ⊆ VG can be represented by a point q ∈ C,
which is common to all those arcs of A, which correspond to the vertices of Q.
Clearly, two distinct cliques must be represented by distinct points. Finally, two
CA models are equivalent when they share the same intersection graph.

In the next section, we present the main basic concepts, in which the pro-
posed characterizations are based. In Section 3, we characterize HCA models,
while HCA graphs are characterized in Section 4. In Section 5, we describe the
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construction of a special CA model, which is employed in the recognition al-
gorithm. Finally, Section 6 describes the recognition algorithm, together with
its certificates. Withou loss of generality, we consider all given graphs to be
connected.

2 Central Definitions

In this section, we describe usefull concepts for the proposed method. Let G be
a graph and (C, A) a CA model of it. First, define special sequences of extremes
of the arcs of A.

(a) (b)

Fig. 3. An obstacle and its non Helly stable model

An s-sequence (t-sequence) is a maximal sequence of start points (end points)
of A, in the circular ordering of C. Write extreme sequence to mean an s-sequence
or t-sequence. The 2n start points and end points are then partitioned into s-
sequences and t-sequences, which alternate in C. For an extreme sequence E,
denote by FIRST (E) the first element of E, while the notations NEXT (E)
and NEXT−1(E) represent the extreme sequences which succeeds and preceeds
E in C, respectively. For an extreme point p ∈ C, denote SEQUENCE(p)
the extreme sequence which contains p, while NEXT (p) means the sequence
NEXT (SEQUENCE(p)). Through the paper, we employ operations on the
CA models, which possibly modify them, while preserving equivalence. A simple
example of such operations is to permute the extremes of the arcs, whitin a same
extreme sequence.

Next, we define a special model of interest.

Definition 1. Let si be a start point of A and S = SEQUENCE(si). Say that
si is stable when i = j or Ai ∩ Aj = ∅, for every tj ∈ NEXT−1(S).
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Definition 2. A model (C, A) is stable when all its start points are stable.

As examples, the models of Figures 1(a) and 1(b) are not stable, while that of
Figure 3(b) is.

We will employ stable models in the recognition process of HCA graphs.
Finally, define a special family of graphs.

Definition 3. An obstacle is a graph H containing a clique Kt ⊆ VH , t ≥ 3,
whose vertices admit a circular ordering v1, . . . , vt, such that each edge vivi+1,
i = 1, . . . , t, satisfies:

(i) N(wi) ∩ Kt = Kt \ {vi, vi+1}, for some wi ∈ VH \ Kt, or
(ii) N(ui) ∩ Kt = Kt \ {vi} and N(zi) ∩ Kt = Kt \ {vi+1}, for some adjacent

vertices ui, zi ∈ VH \ Kt.

As example, the graph of Figure 3(a) is obstacle.
We will show that the obstacles form a family of forbidden induced subgraphs

for a CA graph to be HCA.

3 Characterizing HCA Models

In this section, we describe a characterization and a recognition algorithm for
HCA models. The characterization is as follows:

Theorem 1. A CA model (C, A) is HCA if and only if

(i) if three arcs of A cover C then two of these three arcs also cover it, and
(ii) the intersection graph of (C, A) is chordal.

Proof. By hypothesis, (C, A) is a HCA model. Condition (i) is clear, otherwise
(C, A) can not be HCA. Suppose Condition (ii) fails. Then the intersection graph
Gc of (C, A) contains an induced cycle Cc, with length k > 3. Let A′ ⊆ A be the
set of arcs of A, corresponding to the vertices of Cc, and A′ ⊆ A the sets of the
complements of the arcs Ai ∈ A′. First, observe that no two arcs of A′ cover the
circle, otherwise Cc would contain a chord. Consequently, A′ consists of k arcs
circularly ordered as A1, . . . , Ak and satisfying: Ai ∩Aj �= ∅ if and only if Ai, Aj

are consecutive in the circular ordering. In general, comparing a model (C, A)
to its complement model (C, A), we conclude that two arcs of A intersect if and
only if their complements in A are either disjoint or intersect without covering
the circle. Consequently, A′ must be an intersecting family. On the other hand,
the arcs of A′ can not have a common point p ∈ C. Because, otherwise p �∈ Ai,
for all Ai, meaning that the arcs of A′ do not cover the circle, contradicting Cc

to be an induced cycle. The inexistence of a common point in A′ implies that A
is not a Helly family, a contradiction. Then (ii) holds. The converse is similar.�

The following characterizes minimally non Hely models.
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Corollary 1. A model (C, A) is minimaly non HCA if and only if

(i) A is intersecting and covers C, and
(ii) two arcs of A cover C precisely when they are not consecutive in the circular

ordering of A.

Theorem 1 leads directly to a simple algorithm for recognizing Helly models, as
follows. Given a model (C, A) of some graph G, verify if (C, A) satisfies Condition
(i) and then if it satisfies Condition (ii). Clearly, (C, A) is HCA if and only if
both conditions are satisfied. Next, we describe methods for checking them.

For Condition (i), we seek directly for the existence of three arcs Ai, Aj , Ak ∈
A that cover C, two of them not covering it. Observe that there exist such arcs if
and only if the circular ordering of their extremes is si, tk, sj, ti, sk, tj. For each
Ai ∈ A, we repeat the following procedure, which looks for the other two arcs
Aj , Ak whose extreme points satisfy this ordering. Let L1 be the list of extreme
points of the arcs contained in (si, ti), in the ordering of C. First, remove from
L1 all pairs of extremes sq, tq of a same arc, which may possibly occur. Let L2
be the list formed by the other extremes of the arcs represented in L1. That
is, sq ∈ L1 if and only if tq ∈ L2, and tq ∈ L1 if and only if sq ∈ L2, for any
Aq ∈ A. Clearly, the extremes points which form L2 are all contained in (ti, si),
and we consider them in the circular ordering of C. Denote by FIRST (L1) and
LAST (L2) the first and last extreme points of L1 and L2, in the considered
orderings, respectively. Finally, iteratively perform the steps below, until either
L1 = ∅, or FIRST (L1) = tk and LAST (L2) = tj , for some j, k.

if FIRST (L1) is a start point sq then remove sq from L1 and tq from L2
if LAST (L2) is a start point sq then remove sq from L2 and tq from L1

If the iterations terminate because L1 = ∅ then there are no two arcs which
together with Ai satisfy the above requirements, completing the computations
relative to Ai. Otherwise, the arcs Ak and Aj , whose end points are FIRST (L1)
and LAST (L2), form together with Ai a certificate for the failure of Condition
(i). Each of the n lists L2 needs to be sorted. There is no difficulty to sort them
all together in time O(m), at the beginning of the process. The computations
relative to Ai require O(d(vi)) steps. That is, the overall complexity of checking
Condition (i) is O(m).

For Condition (ii), the direct approach would be to construct the model (C, A),
its intersection graph Gc and apply a chordal graph recognition algorithm to
decide if Gc is chordal. However, the number of edges of Gc could be O(n2),
breaking the linearity of the proposed method. Alternatively, we check whether
the complement Gc of Gc is co-chordal. Observe that two vertices of Gc are ad-
jacent if and only if their corresponding arcs in A cover the circle. Consequently,
the number of edges of Gc is at most that of G, i.e. ≤ m. Since co-chordal graphs
can be recognized in linear time (Habib, McConnell, Paul and Viennot [4]), the
complexity of the method for verifying Condition (ii) is O(m).

Consequently, HCA models can be recognized in linear time.
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4 Characterizing HCA Graphs

In this section, we describe the proposed characterizations for HCA graphs.

Theorem 2. The following affirmative are equivalent for a CA graph G.

(a) G is HCA.
(b) G does not contain obstacles, as induced subgraphs.
(c) All stable models of G are HCA.
(d) One stable model of G is HCA.

Proof. (a) ⇒ (b): By hypothesis, G is HCA. Since HCA graphs are hereditary, it
is sufficient to prove that no obstacle H is a HCA graph. By contrary, suppose H
admits a HCA model (C, A). Let Kt be the core of H . By Definition 3, there is a
circular ordering v1, . . . , vt of the vertices of Kt which satisfies Conditions (i) or
(ii) of it. Denote by A′ = {A1, . . . , At} ⊆ A the family of arcs corresponding to
Kt. Define a clique Ci of H , for each i = 1, . . . , t, as follows. If (i) of Definition
3 is satisfied then Ci ⊇ {wi} ∪ Kt \ {vi, vi+1}, otherwise (ii) is satisfied and
Ci ⊇ {ui, zi} ∪ Kt{vi, vi+1}. Clearly, all cliques C1, . . . , Ct are distinct, because
any two of them contain distinct subsets of Kt. Since H is HCA, there are
distinct points p1, . . . , pt ∈ C, representing C1, . . . , Ct, respectively. We know
that vi ∈ Cj if and only if i �= j − 1, j. Consequently, pj ∈ Ai if and only if
i �= j − 1, j. The latter implies that p1, . . . , pt are also in the circular ordering of
C. On the other hand, because Kt is a clique distinct from any Ci, there is also
a point p ∈ C representing Kt. Try to locate p in C. Clearly, p lies between two
consecutive points pi−1, pi. Examine the vertex vi ∈ Kt and its corresponding
arc Ai ∈ A′. We already know that p ∈ Ai, while pi−1, pi �∈ Ai. Furthermore,
because t ≥ 3, there is j �= i − 1, i such that pj ∈ Ai. Such situation can not be
realized by arc Ai. Then (C, A) is not HCA, a contradiction.

(b) ⇒ (c): By hypothesis, G does not contain obstacles. By contrary, suppose
that there exists a stable model (C, A) of G, which is not HCA. Let A′ ⊆ A be
a minimally non Helly subfamily of A. Denote by A1, . . . , At the arcs of A′ in
the circular ordering. Their corresponding vertices in G are v1, . . . , vt, forming a
clique Kt ⊆ VG. Let Ai, Ai+1 be two consecutive arcs of A′, in the circular order-
ing. By Corollary 1, Ai, Ai+1 do not cover C. Denote T = SEQUENCE(ti+1)
and S = SEQUENCE(si). Because (C, A) is stable, S �= NEXT (T ). Let
S′ = NEXT (T ) and T ′ = NEXT−1(S). Choose sz ∈ S and tu ∈ T ′. We know
that Az does not intersect Ai+1, nor does Au intersect Ai, again because the
model is stable. Since sz , tu ∈ (ti+1, si), Corollary 1 implies that sz, tu ∈ Aj , for
any Aj ∈ A′, Aj �= Ai, Ai+1. Denote by zi and ui the vertices of G corresponding
to Az and Au, respectively. Examine the following alternatives.

If zi and vi are not adjacent, rename zi as wi. Similarly, if ui and v+1 are not
adjacent, let wi be the vertex ui. In any of these two alternatives, it follows that
N(wi)∩Kt = Kt \{vi, vi+1}. The latter means that Condition (i) of Definition 3
holds. When none of the above alternatives occurs, the arcs Az and Au intersect,
because sz preceeds tu in (ti+1, si). That is, zi and wi are adjacent vertices
satisfying N(zi)∩Kt = Kt\{vi+1} and N(ui)∩Kt = Kt\{vi}. This corresponds

OscarLin
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\




80 M.C. Lin and J.L. Szwarcfiter

to Condition (ii) of Definition 3. Consequently, for any pair of vertices vi, vi+1 ∈
Kt it is always possible to select a vertex wi �∈ Kt, or a pair of vertices zi, ui �∈ Kt,
so that Definition 3 is satisfied. That is, G contains an obstacle as an induced
subgraph. This contradiction means all stable models of G are HCA.

The implications (c) ⇒ (d) and (d) ⇒ (a) are trivial, meaning that the proof
is complete. �

5 Constructing Stable Models

Motivated by the characterizations of HCA graphs in terms of stable models,
described in the previous section, we present below an algorithm for constructing
a stable model of a CA graph. Let (C, A) be a CA model of some graph G, and
A1, . . . , An the circular ordering of the arcs of A. Define the following expansion
operations on the end points tj and start points si of A.

expansion(tj):
Examine the extremes points of A, starting from tj , in the clockwise direc-
tion, and choosing the closest start point si satisfying i = j or Ai ∩ Aj = ∅.
Then move tj so as to become the extreme point preceeding si in the model.

expansion(si):
First, examine the extreme points of A, starting from si, in the counter-
clockwise direction, and choosing the closest end point tj satisfying i = j or
Ai ∩ Aj = ∅. Let T = SEQUENCE(tj). Then move si counterclocwise to-
wards T , transforming T into the sequences T ′siT

′′, where T ′ = {tj ∈ T |i = j
or Ai ∩ Aj = ∅} and T ′′ = T \ T ′.

The following lemma asserts that the intersections of the arcs are preserved by
these operations.

Lemma 1. The operations expansion(tj) or expansion(si) applied to a model
(C, A) construct models equivalent to (C, A).

We describe the following algorithm for finding a stable model of a given CA
model, with end points tj and start points si:

1. Perform expansion(tj), for j = 1, . . . , n.
2. Perform expansion(si), for i = 1, . . . , n.

The correctness of this algorithm then follows from Lemma 1 and from the
following theorem.

Theorem 3. The model constructed by the above algorithm is stable.

Proof. Let (C, A) be a given CA model, input to the algorithm. We show that
all its start points are stable, at the end of the process. After the completion
of Step 1, we know that si = FIRST (S) is already stable, for any s-sequence
S. Otherwise, there would exist some end point tj ∈ NEXT−1(S) satisfying
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i �= j and Ai ∩ Aj �= ∅, meaning that tj would have been moved after si in the
clockwise direction, by expansion(tj).

Next, examine Step 2. Choose a start point si and follow the operation
expansion(si). If si is already stable, the algorithm does nothing. Suppose si

is not stable. Let S∗ = SEQUENCE(si) and S the s-sequence closest to S∗

in the counterclockwise direction, where T = NEXT−1(S) contains some tj
satisfying i = j or Ai ∩ Aj = ∅. Then expansion(si) transforms T into the se-
quences T ′siT

′′, where T ′ = {tj ∈ T |i = j or Ai ∩ Aj = ∅} and T ′′ = T \ T ′.
Analyze the new sequences that have been formed. Clearly, T ′ �= ∅, otherwise si

would have been moved further from S∗. On the other hand, T ′′ could possibly
be empty. However, the latter would only imply that T remains unchanged and
that si has been incorporated to S. In any case, T ′ is the t-sequence which pre-
ceeds si. By the construction of T ′, it follows that si is now stable. In addition,
previously stable start points of S remain so, because T ′′ ⊂ T . Furthermore,
observe that si �= FIRST (S∗), because FIRST (S∗) was before stable, whereas
si was not. Consequently, S∗ does not become empty by moving si out of it,
implying that no parts of distinct t-sequences can be merged during the process.
The latter assertion preserves the stability of the stable vertices belonging to the
s-sequence which follows S∗ in C. The remaining start points are not affected by
expansion(si). Consequently, si becomes now stable and all previousloy stable
start points remain so. The algorithm is correct. �

Corollary 2. Every CA model admits an equivalent stable model.

Next, we discuss the complexity of the algorithm. The number of extreme points
examined during the operation expansion(tj) is at most d(vj) + 1, since the
operation stops at the first extreme ti, such that either i = j or Ai ∩ Aj = ∅.
Consequently, Step 1 requires O(m) time. As for the operation expansion(si),
we divide it into two parts. First, for finding the required s-sequence S, the above
argument applies, that is, O(m) time suffices for all si. As for the determina-
tion of the sequences T ′ and T ′′, a straightforward implementation of it would
consist of examining the entire t-sequence T = T ′ ∪ T ′′, for each corresponding
si, meaning O(n2) time, overall. However, a more elaborate implementation is
possible, as follows.

To start, after the completion of Step 1, order the end points of each t-sequence
T , in reverse ordering of their corresponding start points. That is, if tj , tk ∈
T then in the clockwise direction, the extreme points of Aj and Ak appear
as . . . tj . . . tk . . . sk . . . sj . . .. Such an ordering can be obtained in overall O(n)
time. With the end points so ordered, when traversing T = NEXT−1(S), for
completing the operation expansion(si), we can stop at the first tj ∈ T satisfying
i = j or Ai ∩ Aj = ∅. In case the condition i = j holds, we exchange in T , the
positions of tj and FIRST (T ). Afterwards, in any of the two alternatives, move
si to the position just before tj in the counterclockwise direction. We would need
no more than additional d(vi) + 1 steps for it, in the worst case. Consequently,
expansion(si) can be completed in O(m) time, for all start points. Therefore
the complexity of the algorithms is O(m).

OscarLin
Texto insertado
 ¿Qué ocurre si $A_j$ es universal después de expansion(t_j)?
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6 Recognition Algorithm for HCA Graphs

We are now ready to formulate the algorithm for recognizing HCA graphs. Let
G be a graph.

1. Apply the algorithm [7] to recognize whether G is a CA graph. In the affir-
mative case, let (C, A) be the model constructed by [7]. Otherwise terminate
the algorithm (G is not HCA).

2. Transform (C, A) into a stable model, applying the algorithm of Section 5.
3. Verify if (C, A) is a HCA model, applying the algorithm of Section 3. Then

terminate the algorithm (G is HCA if (C, A) is HCA, and otherwise G is not
HCA).

The correctness of the algorithm follows directly from Theorems 1, 2 and 3.
Each of the above steps can be implemented in O(m) time. The complexity

of the algorithm is O(m).
The algorithm constructs a HCA model of the input graph G, in case G is

HCA. If G is CA but not HCA, we can exhibit a certificate of this fact, by
showing a forbidden subgraph of G, that is, an obstacle. In order to construct
the obstacle, we may need certificates of non co-chordality. There is no difficulty
to modify the algorithm [4] so as to produce such certificates. The entire process
can also be implemented in linear time.
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UNIT CIRCULAR-ARC GRAPH REPRESENTATIONS AND
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Abstract. In a recent paper, Durán et al. [J. Algorithms, 58 (2006), pp. 67–78] described an
algorithm of complexity O(n2) for recognizing whether a graph G with n vertices and m edges is a
unit circular-arc (UCA) graph. Furthermore, the following open questions were posed in the above
paper: (i) Is it possible to construct a UCA model for G in polynomial time? (ii) Is it possible
to construct a UCA model, whose extremes of the arcs correspond to integers of polynomial size?
(iii) If (ii) is true, could such a model be constructed in polynomial time? In the present paper,
we describe a characterization of UCA graphs, based on network circulations. The characterization
leads to a different recognition algorithm and to answering these questions in the affirmative. We
construct a UCA model whose extremes of the arcs correspond to integers of size O(n). The proposed
algorithms, for recognizing UCA graphs and constructing UCA models, have complexities O(n+m).
Furthermore, the complexities reduce to O(n), if a proper circular-arc (PCA) model of G is already
given as the input, provided the extremes of the arcs are ordered. We remark that a PCA model
of G can be constructed in O(n + m) time, using the algorithm by Deng, Hell, and Huang [SIAM
J. Comput., 25 (1996), pp. 390–403]. Finally, we also describe a linear time algorithm for finding
feasible circulations in networks with nonnegative lower capacities and unbounded upper capacities.
Such an algorithm is employed in the model construction for UCA graphs.

Key words. algorithm, circular-arc graph, circular-arc model, circulations, networks, proper
circular-arc graph, unit circular-arc graph
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1. Introduction. In a recent paper, Durán et al. [2] described an algorithm of
complexity O(n2) for recognizing whether a graph G, with n vertices and m edges,
is a unit circular-arc (UCA) graph. Furthermore, the following open questions were
posed in [2]:

(i) Is it possible to construct a UCA model for G in polynomial time?
(ii) Is it possible to construct a UCA model, whose extreme points of the arcs

correspond to integers of polynomial size?
(iii) If (ii) is true, could such a model be constructed in polynomial time?

Problems (ii) and (iii) were also proposed in the book by Spinrad [10]. As for
problem (i), the proof of the characterization of UCA graphs in terms of forbidden
subgraphs by Tucker [13], actually contains an algorithm for constructing a UCA
model. However, due to the possible manipulation of large integers, the complexity of
this algorithm is unknown, and so far the construction of a UCA model in polynomial
time remains unsolved [2, 10].
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In the present paper, we propose a characterization for UCA graphs, which leads
to a different recognition algorithm and to answering in affirmative the previous three
questions. An extended abstract of the present paper appeared in [7]. The proposed
algorithm recognizes UCA graphs and constructs UCA models whose extremes of the
arcs correspond to integers of O(n) size, in overall time O(n + m). Furthermore, if
the graph G is already given by a proper circular-arc (PCA) model of it, then the
complexity of the proposed algorithm reduces to O(n), provided the extremes of the
arcs are ordered. Observe that a PCA model for G, when given by its vertices and
edges, can be constructed in O(n+m) time, employing the algorithm by Deng, Hell,
and Huang [1]. Recall that UCA graphs are PCA graphs.

Our method employs network circulations. We formulate an algorithm finding
a feasible circulation in a network with nonnegative lower capacities and unbounded
upper capacities. The algorithm has linear time complexity in the size of the network.

Denote by G an undirected graph, with vertex set V (G) and edge set E(G). For
an edge e ∈ E(G), write e = uv, where u and v are the extremes of e. Denote by
dG(v) for the degree of v in G. We may also simply write d(v), instead. Use a similar
notation for a digraph D. For a directed edge e = uv ∈ E(D), say that u is the
start and v the end of e. Write d−G(v) and d+

G(v) for the indegree and outdegree of
vertex v, respectively. Again, also write d−(v) and d+(v), simply. Moreover, E−(v),
E+(v) ⊆ E(D), represent the set of edges of D entering and leaving v, respectively.
Also, D is connected when its underlying (undirected) graph is connected. Say that
D is strongly connected when D contains paths from u to v and from v to u, for any
u, v ∈ V (D). Finally, the bridge of D is an edge contained in no (directed) cycle of D.

An out-arborescence (in-arborescence) T of D is a spanning connected subdigraph
of D such that there is a distinguished vertex v∗ ∈ V (T ), called the root of T , satisfying
d−T (v∗) = 0 (d+

T (v∗) = 0), while d−T (v) = 1 (d+
T (v) = 1) for all of the remaining vertices

v �= v∗ of T . Clearly, a strongly connected digraph admits both an out-arborescence
and in-arborescence, with root at any arbitrary vertex. When d+

T (v) = 0 (d−T (v) = 0),
call v a leaf of T . For u, v ∈ V (T ), if T contains a path from u to v, then u is
an ancestor of v, and v a descendant of u. A leaf-root ordering of T is a sequence
v1, . . . , vn of its vertices, such that i < j implies vi is not an ancestor (descendant) of
vj in T .

A network is a digraph D, having real values bj , cj associated to each edge ej ∈
E(D). Call bj the lower capacity of ej , while cj is the upper capacity of ej . A
circulation of D is a function W assigning a real number wj to each edge ej of D,
called the flow of ej . Denote w−(vi) =

∑
wj∈E−(vi)

wj and w+ =
∑

wj∈E+(vi)
wj , for

each vi ∈ V (D). A circulation is feasible when it satisfies

w−(vi) = w+(vi), for each vi ∈ V (D), and bj ≤ wj ≤ cj , for each ej ∈ E(D).

For our purposes, we only consider networks with finite nonnegative lower capacities
and flow values, and unbounded the upper capacities. In this case, the condition
wj ≤ cj is always satisfied.

A circular-arc (CA) model for a graph G is a pair (C,A), where C is a circle
and A is a collection of arcs of C, such that each arc Ai ∈ A corresponds to a
vertex vi ∈ V (G), and any Ai, Aj intersects precisely when vi, vj are adjacent in G,
1 ≤ i, j ≤ n, and i �= j. A CA graph is one admitting a CA model. When no arc of
A properly contains another arc of A then (C,A) is a PCA model, while if all arcs
of A have the same length, then (C,A) is a UCA model. A PCA (UCA) graph is
one admitting a PCA (UCA) model. A normal model is a PCA model where no two
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(a)

(b)

Fig. 1. A PCA graph and a normal model of it.

arcs cover the circle. Figure 1(a) depicts a PCA graph and a normal model of it is in
Figure 1(b). When traversing the circle C, always choose the clockwise direction. If
s, t are points of C, then write (s, t) to mean the arc of C defined by traversing the
circle from s to t. Call s, t the extremes of (s, t), while s is the start and t the end of the
arc. The extremes of A are the extremes of Ai ∈ A. For Ai ∈ A, write Ai = (si, ti).
We assume the labelling A1, . . . , An of the arcs is such that the sequence of the start
points s1, . . . , sn is in the circular ordering of C. For p, q ∈ Ai, if (si, p) ⊆ (si, q), then
p precedes q, and q succeeds p in Ai. For p, q, t ∈ C, write max{p, q}t to represent the
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point, p or q, which is farthest from t, in the circular ordering of C. If p is an extreme
of A, then denote by PRED(p) and SUC(p), the extreme of A, which immediately
precedes and succeeds p, in the circular ordering, respectively. We assume that all
arcs of C are open, no two extremes of distinct arcs of A coincide, and no single
arc covers C. An arc of C defined by two consecutive extremes of A is a segment of
(C,A). Clearly, C is the union of the 2n segments of (C,A) and the extreme points.
Figure 1(b) shows the ten segments of the corresponding CA model.

The first characterization of CA graphs leading to a polynomial time recogni-
tion algorithm is due to Tucker [12, 14]. Subsequently, faster algorithms have been
described by Hsu [6] and by Eschen and Spinrad [3]. More recently, a linear time
recognition algorithm for CA graphs has been formulated by McConnell [8]. Deng,
Hell, and Huang [1] described an algorithm for recognizing PCA graphs in linear time.
This algorithm also constructs a corresponding PCA model for the graph. As for UCA
graphs, the first polynomial time recognition algorithm is that by Durán et al. [2].

Given a graph G, the algorithm [2] initially employs algorithm [1] to construct
a PCA model (C,A) of G, if any. Clearly, G is not UCA if such a model does not
exist. Afterwards, this algorithm proceeds with two main phases: The first of them
is to transform (C,A) into a normal model. The last phase is the actual algorithm
for deciding if G is a UCA graph, employing the normal model constructed in the
first phase. The complexities of the algorithms corresponding to these two phases are
both O(n2). The method proposed in the present paper is also composed by similar
phases. However, the complexities of the two corresponding algorithms are O(n).

In section 2, we describe the characterizations in which are based the proposed al-
gorithms. The characterization of UCA graphs relates them to circulations in special
networks. Section 3 describes the algorithm for finding feasible circulations in general
networks, having nonnegative lower capacities and unbounded upper capacities. Sec-
tion 4 presents the algorithm for constructing normal models. Section 5 contains the
actual algorithm for recognizing UCA graphs and constructing UCA models. Further
comments form the last section.

2. A characterization for UCA graphs. In this section, we characterize UCA
graphs in terms of circulations of a special network. The following two theorems are
basic to our purposes.

Theorem 1 (see Golumbic [4] and Tucker [13]). Let G be a PCA graph. Then
G admits a normal model.

Theorem 2 (see Tucker [13]). Let G be a UCA graph and (C,A) a normal model
of it. Then G admits a UCA model, such that its extremes are in the same circular
ordering as those of (C,A).

Let G be a CA graph and (C,A) a CA model of it. Denote by S1, . . . , S2n the
segments of (C,A) in circular ordering, where the start of S1 and that of A1 coincide.
Denote by lj the length of Sj . Clearly, any arc Ai ∈ A may be decomposed into
the segments which form it. The length of Ai equals

∑
Sj⊆Ai

lj . The decomposition
allows one to represent relations between lengths of arcs by relations between lengths
of the corresponding segments. Consequently, the condition of equality between any
two arc lengths required by a UCA model can be expressed by a system of n−1 linear
equations qi, together with 2n inequalities, called the full system of (C,A):

qi :
∑

Sj⊆Ai

lj =
∑

Sj⊆Ai+1

lj , i = 1, . . . , n− 1,(2.1)
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lj > 0, j = 1, . . . , 2n.(2.2)

Clearly, equation qi corresponds to the condition that the length of arc Ai equals
that of Ai+1. The segment lengths lj are the variables of such a system of equations.
Our aim is to find a solution of the full system, if existing. The values of lj , obtained
from the solution of the system, would define a UCA model for G. In equation qi,
call the term

∑
Sj⊆Ai

lj the left side of qi, while
∑

Sj⊆Ai+1
lj is its right side. Each

equation qi can possibly be simplified if the length lj of a same segment appears in
both the left and right sides of qi. In this case, subtract lj from both sides of qi.
The equations so obtained form the reduced system of (C,A). The following lemma
describes a useful property of these systems.

Lemma 3. Let G be a PCA graph, (C,A) a normal model of it, and R the reduced
system of (C,A). Then each segment length lj of (C,A) appears at least once in R,
unless Sj is a segment contained in all arcs of A or in none of them. Furthermore, lj
appears at most twice in R. In the latter situation, the two instances of lj in R occur
in different sides of their equations.

Proof. Let Sj be any segment of the normal model (C,A). Denote by A′ the set
of arcs of A covering Sj . If A′ = ∅, then no arc of A contains Sj , implying that lj
does not appear in R, and the lemma is satisfied. Consider A′ �= ∅. We know that
A′ does not entirely cover C, otherwise there would be two arcs of A which would
do so, contradicting (C,A) to be normal. Consequently, the circular ordering of the
extremes of (C,A), when restricted to the arcs of A′, is a linear ordering. Let Ai and
Ak be the first and last arcs of A′, respectively, in the considered linear ordering.

First, let i ≤ k. Observe that lj is not on the right side of any of the equations
qi, . . . , qk, of R. Because if lj is on the right side of qt, then k ≥ t ≥ i in the full system.
However, lj is also on the left side of qt, hence it gets simplified in R. However, lj is
on the right side of qi−1 in R provided i > 1. Similarly, lj is not on the left side of
any qi, . . . , qk−1 but it is at the left of qk, provided k < n. On the other hand, i = 1
and k = n imply that Sj is common to all arcs of A. Consequently, each lj appears
at least once in R, unless Sj is contained in all arcs of A, or in none of them.

Consider the alternative i > k. If i − 1 > k, then lj appears on the left of qi−1

and on the right of qk. There are no other occurrences of lj . Finally, when i−1 = k it
follows that Sj is common to all arcs of A. Again, each lj always appears at least once
in R, except when Sj is contained in all arcs of A. Furthermore, it appears at most
twice in R. In the latter situation, lj occurs on different sides of the corresponding
equations.

Aiming to solve R efficiently, we describe a graph theoretical model for it. Define
the segment digraph D, as follows. There is a vertex vi ∈ V (D) for each equation qi of
R, and one edge ej for each segment Sj of (C,A). In addition, there is a distinguished
vertex v0 ∈ V (D). Each edge ej ∈ E(D) is directed according to:
(i) If lj appears at the left of some equation qi of R, then ej starts at vi; otherwise

it starts at v0.
(ii) If lj appears at the right of some equation qk, then ej ends at vk; otherwise it

ends at v0.
The description of D is complete. Clearly, D has n vertices and 2n edges and no

loops, except possibly at v0.
By adding to each edge ej ∈ E(D) a lower capacity bj = 1 and an unbounded

upper capacity cj , we obtain the segment network of D.
As an example, the reduced system of the PCA model of Figure 1(b) is illustrated

in Figure 2(a), while the corresponding segment digraph is in Figure 2(b). Similarly,
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q1: l1 = l4 + l5
q2: l2 + l3 + l4 = l6 + l7

R q3: l5 + l6 = l8 + l9
q4: l7 + l8 = l10 + l1 + l2

(a)

(b)

Fig. 2. The reduced system of Figure 1(b) and its segment digraph.

the reduced system and segment digraph corresponding to the PCA model of Figure
3(b) appear in Figures 4(a) and 4(b), respectively.

The following theorem characterizes UCA graphs in terms of feasible circulations.

Theorem 4. Let G be a PCA graph, (C,A) a normal model of it, and D its seg-
ment network. Then G is a UCA graph if and only if D admits a feasible circulation.

Proof. Let G be a UCA graph, and (C,A) a normal model of G. By Theorem
2, there exists a UCA model (C ′,A′) of G such that the endpoints of the arcs of
A and A′ are in the same ordering. That is, (C,A) and (C ′,A′) differ only by the
lengths of the corresponding segments. Let R be the reduced system of (C,A) and
D be the segment network. Define a circulation W by assigning a flow wj to each
edge ej of D, equal to the length l′j of the segment of (C ′,A′), corresponding to
Sj . We show that such an assigment W is a circulation of D. Let vi ∈ V (D),
1 ≤ i ≤ n−1, and qi the corresponding equation in R. Then w−(vi) =

∑
Sj⊆Ai\Ai+1

l′j .

Similarly, w+(vi) =
∑

Sj⊆Ai+1\Ai
l′j . Because (C ′,A′) is a UCA model, the lengths

of arcs A′
i and A′

i+1 of A′ are the same, implying that w−(vi) = w+(vi). It remains
to show that this equality also holds for v0. This assertion follows from the fact
that

∑
0≤i≤n−1 w

−(vi) =
∑

0≤i≤n−1 w
+(vi), because every edge ej counts l′j units

both in
∑

0≤i≤n−1 w
−(vi) and

∑
0≤i≤n−1 w

+(vi). Since w−(vi) = w+(vi), for each

1 ≤ i ≤ n− 1, it follows that w−(v0) = w+(v0). Consequently, W is indeed a feasible
circulation of D.
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(a)

(b)

Fig. 3. Another PCA graph with its normal model.

Conversely, by hypothesis, D admits a feasible circulation W . We prove that G
is UCA by constructing a UCA model (C ′,A′) for G. First, consider the situation
where no segment Sj of (C,A) is contained in all arcs of A or in none of them. Let wj

be the flow of edge ej of D. Construct the model (C ′,A′) of G, by maintaining the
endpoints of the arcs of A′ in the same circular ordering as those in A, while possibly
modifying the lengths of the segments. The length of C ′ is defined as

∑
ej∈E(D) wj ,

while the length of the segment of (C ′,A′) corresponding to Sj is set to the flow wj

of ej . We show that the model so constructed is a UCA model.
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q1: l1 + l2 + l3 = l6
q2: l4 = l7 + l8 + l9

R q3: l5 + l6 + l7 = l10
q4: l8 = l11 + l12 + l1
q5: l9 + l10 + l11 = l2

(a)

(b)

Fig. 4. The reduced system of Figure 3(b) and its segment digraph.

Let R be the reduced system of (C,A). We show that the assigment lj := wj for
each segment Sj of (C,A) is a solution to R. Let qi be an equation of R and vi the
corresponding vertex of D. By the construction of D, the left side of qi corresponds
to the flow values of the edges of D ending at vi, while the right side of qi corresponds
to the flow values of the edges, starting at vi. Because D is feasible, w−(vi) = w+(vi),
implying that

∑
Sj⊆Ai

lj =
∑

Sj⊆Ai+1
lj . Moreover, all lj are positive, because the

lower capacities are satisfied. Consequently, W is a solution to R. Clearly, any
solution to R is also a solution to the full system. On the other hand, because no
segment is contained in all arcs of A or in none of them, Lemma 3 implies that all
segment lengths appearing in the full system also appears in the reduced system,
and consequently have been assigned a required value, The latter implies that all arc
lengths of A′ are equal, meaning that (C ′,A′) is a UCA model.

Finally, examine the situation where there is a segment Sj contained in all arcs
of A or in none of them. Construct (C ′,A′) as above, and assign any positive length
to Sj . Clearly, all arc lengths of A′ are equal and (C ′,A′) is a UCA model.

The above theorem implies that the problem of recognizing if a given graph G is
UCA is equivalent to deciding if the corresponding segment network admits a feasible
circulation. We describe a characterization for the existence of circulations in general
networks, with arbitrary real nonnegative lower capacities and unbounded upper ca-
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pacities. This is a special case of Hoffman’s circulation theorem, as below. See [9].
For a subdigraph B of D, write b−(B) =

∑
ej∈E−(B) bj and c+(B) =

∑
ej∈E+(B) cj

Theorem 5 (see Hoffman [5]). Let D be a network having an arbitrary real lower
capacity bj and upper capacity cj, for each edge ej ∈ E(D). Then D admits a feasible
circulation W if and only if b−(B) ≤ c+(B), for each subdigraph B of D. Moreover,
if b and c are integers, then the flow values can be taken as integers.

Corollary 6. Let D be a network with real nonnegative lower capacities and
unbounded upper capacities. Then D admits a feasible circulation if and only if all
bridges of D have lower capacity zero. In this case, a circulation with integer flow
values always exists.

Proof. Suppose D admits a feasible circulation W . To the contrary, assume that
D has a bridge ej with positive lower capacity. Then ej ∈ E+(B), E−(B′) for some
distinct strongly connected components B,B′ of D. In this situation, we know that
w(E−(B′)) > 0 and w(E+(B′)) > 0. The latter implies that there exists some edge ek
leaving B′ and enters a strongly connected component B′′ �= B,B′, such that wk > 0.
Repeating this argument over and over leads to the contradiction that D is not finite.
Consequently, no such ej may exist.

Conversely, by hypothesis all bridges of D have lower capacity equal to zero. Let
B be any strongly connected component of D. Then any proper subdigraph B′ of
B satisfies E−(B′), E+(B′) �= ∅. Since the upper capacities of D are unbounded
and the lower capacities are not, it follows that b−(B′) < c+(B′). Using Theorem 5,
we conclude that B admits a feasible circulation, then repeat this argument for the
remaining strongly connected components of D. Finally, assign the flow value equal
to zero to all bridges of D. We have so obtained a feasible circulation. By simply
replacing each lower capacity bj by the value �bj	, we obtain a feasible circulation
with integer flow values.

As examples, observe that the segment digraph of Figure 2(b) is strongly con-
nected, while that of Figure 4(b) is not. Consequently, the graph of Figure 1(a) is a
UCA graph, while that of Figure 3(a) is not.

3. Finding feasible circulations. Let D be a network having finite real non-
negative lower capacities and unbounded upper capacities. We describe an algorithm
which finds a feasible circulation W of D, or reports that such circulation does not
exist. For each edge ej of D, let bj be the given nonnegative lower capacity. The
algorithm below computes integer flow values wj of the feasible circulation W of D.

1. Find the strongly connected components and the bridges of D. If any bridge
has a positive lower capacity, then report that no feasible circulation exists
and stop. Otherwise, set the flow value wj := 0 for each bridge edge ej of
D. Then perform step 2 for each strongly connected component B of D. At
termination, stop.

2. Assign the initial flow values wj := �bj	, for each edge ej ∈ E(B). Then
compute w−(vi) =

∑
ej∈E−(vi)

wj and w+(vi) =
∑

ej∈E+(vi)
wj for each

vi ∈ V (B). Finally, run OUT PROCEDURE and afterwards run IN PRO-
CEDURE.

OUT PROCEDURE. Choose an arbitrary vertex v∗ ∈ V (B) and find an
out-arborescence T of B, with root v∗. Repeat the following operations, for
each vertex v ∈ V (T ), v �= v∗, in leaf-root ordering: if w−(v) < w+(v)
then set w+(u) := w+(u) + w+(v) − w−(v), wj := wj + w+(v) − w−(v) and
w−(v) := w+(v), where ej = uv is the edge of T ending at v.
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IN PROCEDURE. Construct an in-arborescence T of B, with the same root
v∗, as chosen in the computation of the OUT PROCEDURE for B. Repeat
the following operations, for each vertex v ∈ V (T ), v �= v∗, in leaf-root
ordering: if w+(v) < w−(v), then set w−(u) := w+(u) + w−(v) − w+(v),
wj := wj + w−(v) − w+(v), and w+(v) := w−(v), where ej = vu is the edge
of T starting at v.

Next, we assert the correctness of the algorithm.
Theorem 7. The above algorithm finds a feasible circulation for D.
Proof. From Corollary 6, it follows that the algorithm correctly reports the nonex-

istence of a circulation, whenever there exists a bridge having a positive lower capacity.
Otherwise, let B be any strongly connected component of D. We show that the flow
values assigned by the algorithm to the edges of B define a feasible circulation for B.
Furthermore, since the bridges are assigned a zero flow, the latter implies that the
circulation of D so obtained is also feasible.

First, observe that since B is strongly connected it admits both an out-arborescence
and an in-arborescence, rooted at the same arbitrary vertex v∗ ∈ V (B). Classify
the vertices vi of D into three types, according to the initial values of w−(vi) and
w+(vi). Say that a vertex v is in-deficient when w−(v) < w+(v), out-deficient when
w+(v) < w−(v), and balanced when w−(v) = w+(v).

Consider the computation of OUT PROCEDURE and examine the vertices of the
chosen out-arborescence T of B, in the ordering chosen by the algorithm. Let v �= v∗

be the vertex next to be visited, in the considered ordering. If v is in-deficient, then
the algorithm chooses the edge ej of T ending at v and modify its weight from wj to
the value wj +w+(v)−w−(v). It is clear that v becomes balanced. Moreover, since T
contains exactly one edge ej entering v, we can assure that v remains balanced until
the end of OUT PROCEDURE. Consequently, B does not contain in-deficient vertices
at the completion of the procedure, except possibly v∗. Similarly, after the completion
of IN PROCEDURE, B does not contain out-deficient vertices, except possibly v∗.
Furthermore, the computation of IN PROCEDURE cannot create in-deficient vertices.
Consequently, after completing the visits to the second tree, we can assure that all
vertices are balanced, except possibly v∗. However, wj = 0, for every bridge ej of D.
Consequently,

∑
v∈V (B) w

−(v) =
∑

v∈V (B) w
+(v) =

∑
ej∈E(B) wj . That is, w−(v∗) =∑

v∈V (B) w
−(v)−

∑
v �=v∗ w−(v) =

∑
v∈V (B) w

+(v)−
∑

v �=v∗ w+(v) = w+(v∗), meaning

that v∗ is automatically balanced. Finally, the vertices of B′ outside B are clearly
balanced, because all edges entering and leaving them have flow value zero. Therefore
W is indeed a feasible circulation.

It is simple to determine the complexity of the algorithm. Finding strongly con-
nected components can be done in O(n+m) time [11], so as for the initial flow value
assignments. The computation of OUT PROCEDURE and IN PROCEDURE require
O(n) time. Consequently, the overall time is O(n + m).

Finally, observe that the flow values of the feasible circulation obtained by the
algorithm are all integers of size wj < 2

∑
ej∈E(D)�bj	.

4. Constructing normal models. Let G be a PCA graph and (C,A) a PCA
model of it. We describe an algorithm for transforming (C,A) into a normal model.
The algorithm is based on [2, 4, 13]. For each Ai ∈ A, the idea is to traverse C,
searching for an arc Aj of A which together with Ai would cover C. If such an arc is
found, then the arc Aj is conveniently shrunk with the purpose that Ai, Aj would no
longer cover C. Clearly, it has to be assured that the new model so obtained is still
a PCA model for G. Recall from Theorem 1 that any PCA graph admits a normal



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UCA REPRESENTATIONS AND FEASIBLE CIRCULATIONS 419

model.

The proposed method considers the arcs Ai in the circular ordering A1, . . . , An.
For each i, only a fraction of the arcs of A would be examined in general, with
the above goal of searching for an arc Aj , which together with Ai, cover C. The
algorithm consists of the computation of a procedure NORMAL(i), for i = 1, . . . , n.
Each computation NORMAL(i) examines the extreme points s′i, . . . , t

′
i ∈ Ai∪{si, ti},

consecutive in the circular ordering, where s′i is the first point and t′i the last point
of NORMAL(i), respectively. Each iteration inside NORMAL(i) considers one of
the extreme points s′i, . . . , t

′
i, in circular ordering. Let p be the current point under

examination by NORMAL(i). Clearly, p is either a start point or an end point. The
following is the action taken, according to these alternatives. If p is a start point,
then nothing is done and the examination of p is terminated. Otherwise, p = tj for
some j, and check whether Ai and Aj cover C. In the affirmative case, shrink Aj in
such a way that Ai and Aj would no longer cover C, and terminate the examination
of p. The actual shrinking operation consists of moving tj counterclockwise in C, so
that it becomes an interior point of the segment (PRED(si), si). When Ai and Aj do
not cover C, then terminate the computation NORMAL(i), disregarding all possible
extreme points of (C,A) contained in Ai which lie after p = tj , when traversing Ai

in the circular ordering. Consequently, such an extreme point is the last point t′i
of NORMAL(i). The first point s′i of NORMAL(i) is determined at the moment
NORMAL(i) starts, as follows. When i = 1, define s′1 = s1. For i > 1, let s′i =
max{si, t′i−1}si−1 . Similarly as above, the algorithm disregards all extreme points
contained in Ai, which lie before s′i in Ai.

The procedure is formulated below. If p and q are points of C, then denote by
POINT (p, q) an arbitrarily chosen point of the (open) arc (p, q). The external calls
are NORMAL(i), for i = 1, . . . , n.

procedure NORMAL(i)
if i = 1 then p := s1 else p := max{p, si}si−1

repeat
if p is an end point tj then

if Ai ∪Aj = C then tj := POINT (PRED(si), si)
else return

p := SUC(p)

The following theorem assures that NORMAL(i) terminates, and (C,A) is a
normal model after the computation of NORMAL(n).

Theorem 8. The algorithm is correct.

Proof. The algorithm consists of the computation of NORMAL(i), for i =
1, . . . , n. We prove that after completing NORMAL(i), no two arcs Ak and Aj cover
C, with 1 ≤ k ≤ i. Furthermore, we ought to prove that the shrinking operations
maintain (C,A) as a PCA model for G.

Clearly, if there is an arc Aj such that Ai and Aj cover C, then sj , tj ∈ Ai, and
tj precedes sj in Ai. Suppose the point p = tj is reached during NORMAL(i). Then
Ai ∪Aj = C implies that tj will be moved to POINT (PRED(si), si). Let A∗

j be the
new arc Aj , after shrinking. We know that Ai, A

∗
j no longer cover C. We show that

the configuration of (C,A) still reflects the adjacencies of G. Clearly, Ai and A∗
j still

intersect, otherwise Ai, Aj would not cover C. We discuss the intersections between
A∗

j and any other arc Ak �= Ai. We can restrict to arcs Ak which intersect Ai and
have an extreme point, sk or tk, inside (si, tj), since the intersections of A∗

j and the
remaining arcs are not affected by the shrinking of Aj . The following are the possible
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alternatives.

Case 1. sk ∈ (si, tj). If tk ∈ (si, ti), then tk precedes sk in Ai, otherwise (C,A) is
not a PCA model. Consequently, Ak and A∗

j also intersect. When tk �∈ (si, ti)
it follows that A∗

j and Ak again intersect, because sj ∈ (si, ti).
Case 2. sk �∈ (si, tj). By the initial assumption, tk ∈ (si, tj). Examine the possibil-

ities for sk. The situation sk ∈ (si, tj) is in Case 1. Let sk �∈ (si, tj). Then
sk ∈ (tj , sj), otherwise Aj contains Ak. Consequently, A∗

j and Ak again
intersect.

Consequently, shrinking Aj in the manner NORMAL(i) does actually preserve
adjacencies. In what follows, we show that the modified model is still a PCA model.
It is sufficient to prove that A∗

j cannot be contained in any other arc of A, except
for Aj which has been removed. Suppose the contrary, that is, A∗

j is contained in
some arc Ak. In this case, the circular ordering of the considered extreme points must
be t∗j , si, tk, tj , sk, sj , ti; otherwise Ak also contains Aj , or Ak does not contain A∗

j .
Consequently, Ak ∪Ai = C. Since tk precedes tj in Ai, it follows that Ak would have
been shrunk before Aj in NORMAL(i). The latter contradicts Ak to contain A∗

j .

It remains to show that any arc Ak, which together with Ai covers C, is detected
by the algorithm. Suppose the contrary. That is, NORMAL(i) terminates and does
not shrink Ak. Then tk �∈ (s′i, t

′
i). Because tk ∈ (si, ti), there are two possibilities.

Case 1. tk ∈ (si, s
′
i). Then si �= s′i, which implies i > 1 and t′i−1 ∈ Ai. We also know

that s′i ≡ t′i−1 is an end point tj satisfying Ai−1 ∪ Aj �= C. Observe that
Ai−1 and Aj may (or may not) coincide. Because (C,A) is a PCA model,
the sequence sj , si−1, si, tk, tj , ti−1, ti is in the circular ordering. Try to locate
sk. Because Ai ∪ Ak = C, sk ∈ (tk, ti). However, sk �∈ (tk, ti−1) because Ak

and Ai−1 would also cover C, implying that NORMAL(i − 1) would also
have moved tk from the considered position, by an inductive argument. On
the other hand, sk �∈ (ti−1, ti) because in this case Ai−1 ∪ Ak �= C, implying
that tk would have been reached by NORMAL(i−1) before tj . In the latter
situation, NORMAL(i − 1) would have terminated at tk, contradicting the
assumption.

Case 2. tk ∈ (t′i, ti). We know there is an arc Aj , such that tj = t′i and Ai ∪Aj �= C.
Because Ai ∪ Ak = C, it follows that sk ∈ (tk, ti). In this situation, Ak

contains Aj , contradicting (C,A) to be a PCA model. Hence, Case 2 also
does not occur.

Therefore every arc, which together with Ai covers C, is shrunk by the algorithm,
completing the proof of correctness.

Theorem 9. The algorithm terminates within O(n) time. Moreover, there are
less than 6n iterations of the repeat block during the entire process.

Proof. The number of steps performed by the algorithm corresponds to the num-
ber of iterations of the repeat block of the described formulation. Such a number
is equivalent to the number of assignments of extreme points to p during the entire
process. We will prove that the total number of such assignments is less than 6n.
The first value of p is s1 and the last one, in the worst case, is tn. We know that p
never moves counterclockwise in C. First, assume for a while that p does not stay
stationary in two consecutive iterations, and also disregard the shrinking of arcs. Any
of the 2n extreme points can be assigned to p. If tn �∈ A1, then the assignments
would correspond at most to a complete turn around the circle, because the model
is PCA. That is, 2n assignments. On the other hand, if tn ∈ A1, then any extreme
lying between s1 and tn may be assigned again to p, but at most once more, besides
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its assignment in NORMAL(1). This corresponds to an additional n units in our
account.

Next, examine the case when p stays stationary in two consecutive iterations.
Such a situation may only occur, possibly at the first iteration within NORMAL(i),
when s′i = t′i−1, for i > 1. Overall, it counts to additional n− 1 units, at most, in the
total number of assignments to p.

Finally, examine the shrinking operations. Each time an arc Aj is shrunk, an
extreme point t∗j is placed in a different position of (C,A), offering the possibility
to t∗j itself to be assigned to p. Hence, the shrinking operations may contribute to
our account. In fact, if an arc gets shrunk k times during the algorithm, this may
represent additional k assigments to p, in the worst case. Furthermore, there might
be O(n) distinct arcs, each of them covering C, together with Aj . However, the next
assertion assures that even in this case, the number of times Aj gets shrunk is low.

Claim. Any arc of (C,A) may be shrunk at most twice during the entire
algorithm.

Proof. Let Aj be an arc of (C,A). Clearly, if Aj together with some other arc
does not cover C, then Aj is not shrunk at all. Otherwise, consider the model (C,A)
at the beginning of the computation NORMAL(k), where Aj gets shrunk for the
first time, if any. Denote by Aj1 , . . . , Ajl the arcs of (C,A), each of them covers
C, together with Aj . This implies that all extreme points of the arcs Aj1 , . . . , Ajl

belong to (sj , tj). Furthermore, sjk precedes tjk in Aj , 1 ≤ k ≤ l. Without loss of
generality, the starting points sj1 , . . . , sjl are in the circular ordering. Clearly, the
arc of least index among Aj , Aj1 , . . . , Ajl corresponds to one of this collection which
is first handled by the algorithm. Let i = min{j, j1, . . . , jl}. The following are the
alternatives for i:
Case 1. i = j. We know that NORMAL(j) does not shrink Aj . Furthermore,

Theorem 8 implies that NORMAL(j) would shrink all arcs Aj1 , . . . , Ajl .
Consequently, Aj never gets shrunk.

Case 2. i = j1. Because Aj and Aj1 cover C, during NORMAL(j1) the assign-
ment p := tj necessarily occurs, since Theorem 8 assures that NORMAL(j1)
shrinks Aj . Then tj moves to the position t∗j , becoming the predecessor of
s1. The arc A∗

j so obtained does not intersect any of Aj1 , . . . , Ajl , and conse-
quently, it cannot get shrunk. Consequently, Aj is shrunk only once during
the process.

Case 3. i = jk, for some 1 < k ≤ l. Then NORMAL(jk) moves tj to t∗j , where
t∗j , this time, is the new predecessor of sjk . Following the circular ordering
of (C,A), the first subsequent computation which can possibly shrink Aj is
NORMAL(j1). By Case 2, the latter would shrink Aj , exactly once more.
Consequently, Aj gets shrunk twice.

The conclusion is that any arc may get shrunk at most twice during the
process.

Consequently, the shrinking operations contribute at most 2n units to our account.
Therefore the algorithm performs less than 6n iterations of the repeat block. Each of
these iterations requires no more than constant time. That is, the overall complexity
is O(n).

5. Recognition and model construction. In this section, we describe the
algorithms for recognizing UCA graphs and for constructing UCA models. Also, we
determine the size of the obtained model by showing that its extremes correspond to
integers of size O(n).
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The algorithm is as follows. Let G be the given graph.
1. Verify if G is a PCA graph, using the algorithm [1]. In the affirmative case,

let (C,A) be the PCA model so obtained. In the negative case, G is not
UCA.

2. Transform (C,A) into a normal model (C ′,A′), using the algorithm of section
4.

3. Construct the segment digraph D of (C ′,A′). Find the connected components
of D. Verify if all connected components are strongly connected. In the
negative case, report that G is not UCA and stop. Otherwise, report that G
is UCA and construct a UCA model (C ′′,A′′) of it by running Step 4.

4. Construct the segment network of (C ′,A′) by assigning to each edge ej ∈
E(D) a unit lower capacity and an unbounded upper capacity. Then find the
flow values of a feasible circulation W of D, using the algorithm of section
3. Let p′1, . . . , p

′
2n be the extremes of (C ′,A′), in circular ordering, with p1

corresponding to the start point of the first arc of the model. Then con-
struct (C ′′,A′′) as follows. The length of C ′′ is

∑
ej∈E(D) wj . The extremes

p′′1 , . . . , p
′′
2n of (C ′′,A′′) are defined by the following conditions: p′′1 is an arbi-

trary point of C ′′, and the segment (p′′j , p
′′
j+1) has length wj , 1 ≤ j < 2n.

The correctness follows basically from Theorems 4, 7, and 8, and Corollary 6. We
evaluate the complexity of the recognition algorithm. Step 1 requires O(n + m) time
[1]. Step 2 takes O(n) time by Theorem 9. As for Step 3, note that for constructing
the segment digraph, we need to construct the full and reduced systems of (C ′,A′).
The first of them is a family of n− 1 equations, whose variables are segment lengths.
In each side of the equations, the segment lengths are consecutive. Consequently, we
need 4n − 4 indices to represent these equations, overall. On the other hand, in the
reduced system, each segment length appears at most twice. That is, it requires at
most 4n indices. The segment digraph has n vertices and at most 2n edges. There
is no difficulty to construct D in O(n) time. The connected and strongly connected
components can be constructed in linear time [11]. Step 4 also requires linear time
in the size of D, according to section 3. Consequently, the overall complexity of
algorithm is O(n + m). Furthermore, Steps 2, 3, and 4 require O(n) time, meaning
that the complexity of the algorithm reduces to O(n), if the input is a PCA model of
G, with ordered extremes of the arcs.

Finally, we verify the size of the UCA model obtained by the algorithm.
Corollary 10. Let (C,A) be a UCA model constructed by the algorithm. Then

the extremes of (C,A) correspond to integers of size < 4n.
Proof. Let p1, . . . , p2n be the extremes of (C,A) in circular ordering. We associate

the segment length lj to the extreme pj+1, 1 ≤ j < 2n. From Step 4 of the algorithm,
we know that the length lj of each segment of (C,A) equals the flow value wj of
the corresponding edge ej of D. On the other hand, we know from section 3 that
wj < 2m. Since m < 2n, it follows that lj < 4n.

6. Conclusion. The proposed algorithms for recognizing UCA graphs and con-
structing UCA models terminate within O(n+m) time. Furthermore, the complexity
reduces to O(n) when the input is a PCA model. It should be noted that the al-
gorithms require the extreme points of the given model to be ordered. If the input
is a graph given by its vertices and edges, then there is a preprocessing step, which
consists of running the algorithm by Deng, Hell, and Huang [1], for constructing a
PCA model of the graph. The algorithm [1] can be implemented so as to construct a
PCA model with ordered extreme points within O(n + m) time. On the other hand,
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if the input is already a PCA model and its extreme points are not ordered, then we
need an additional O(n log n) steps for ordering.

The UCA model constructed by the proposed algorithm is such that its extreme
points correspond to integers of size O(n). Regarding this feature, we leave the four
related questions below.

Given a UCA graph G, find a UCA model whose extremes of the arcs correspond
to integers, satisfying
(i) the maximum segment length is minimized.
(ii) the circle length is minimized.

More generally, for given n, find the least l, such that any UCA graph with n
vertices admits a UCA model whose extremes of the arcs correspond to integers, such
that
(iii) the maximum segment length is ≤ l.
(iv) the circle length is ≤ l.

Corollary 10 implies that l < 4n for Question (iii), and that l < 4n2 for Question
(iv).
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Abstract. A circular-arc model M = (C, A) is a circle C together with
a collection A of arcs of C. If no arc is contained in any other then M
is a proper circular-arc model, and if some point of C is not covered
by any arc then M is an interval model. A (proper) (interval) circular-
arc graph is the intersection graph of a (proper) (interval) circular-arc
model. Circular-arc graphs and their subclasses have been the object of
a great deal of attention in the literature. Linear time recognition algo-
rithms have been described both for the general class and for some of
its subclasses. For the isomorphism problem, there exists a polynomial
time algorithm for the general case, and a linear time algorithm for in-
terval graphs. In this work we develop a linear time algorithm for the
isomorphism problem in proper circular-arc graphs, based on uniquely
encoding a proper circular-arc model. Our method relies on results about
uniqueness of certain PCA models, developed by Deng, Hell and Huang
in [6]. The algorithm is easy to code and uses only basic tools available
in almost every programming language.
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circular-arc canonization.
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of graphs that have been receiving much attention recently. Proper interval
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and proper circular-arc graphs are two of the most studied subclasses of in-
terval and circular-arc graphs [4,8,21]. Booth and Lueker found the first linear
time algorithm for recognizing interval graphs using a data structure called PQ-
trees [3]. Since then a lot of effort has been put into simplifying this algorithm
and avoiding the use of PQ-trees [5,9,10,14]. For circular-arc graphs there is also
a great amount of work focused into finding a simple linear time recognition
algorithm [12]. The first linear time algorithm is due to McConnell [18] and is
not simple to implement.

Algorithms for proper circular-arc recognition in linear time are also known,
and they were always much easier to implement than those for the general
case [6,13]. Deng, Hell and Huang exploit their proper interval graph recogni-
tion algorithm to develop a linear time algorithm for proper circular-arc graphs,
based on local tournaments [6]. They also described results about the uniqueness
of connected proper circular-arc graphs and proper circular-arc models, that we
use to build our isomorphism testing algorithm.

The isomorphism problem is a hard to solve NP problem, although it is not
known whether it is NP-hard. Nevertheless, this problem is known to be poly-
nomial or even linear for several classes of graphs [7]. For interval graphs, la-
beled PQ-trees can be used to test for isomorphism in linear time [17], while for
circular-arc graph the best known algorithm runs in O(mn) time [11].

In this work we present a simple algorithm for the isomorphism problem re-
stricted to proper circular-arc graphs. This algorithm runs in O(n) time, when a
proper circular-arc model is given. The objective is to uniquely encode a “canon-
ical” proper circular-arc model of the graph. This canonical model is obtained
by rotating, reflecting and sorting each (co-)component of the input model.

Let G = (V (G), E(G)) be a graph, n = |V (G)| and m = |E(G)|. Denote
by G the complement of G. Graph G is co-connected when G is connected.
A (co-)component is a maximal (co-)connected subgraph of G. For v ∈ V (G),
denote by N(v) the set of vertices adjacent to v, and write N [v] = N(v) ∪ {v}
and N(v) = V (G) \ N [v]. A vertex v of G is universal if N [v] = V (G).

A circular-arc (CA) model M is a pair (C, A), where C is a circle and A is a
collection of arcs of C. When traversing the circle C, we will always choose the
clockwise direction, unless explicitly stated. If s, t are points of C, write (s, t)
to mean the arc of C defined by traversing the circle from s to t. Call s, t the
extremes of (s, t), while s is the start point and t the end point of the arc. The
extremes of A are those of all arcs A ∈ A. The reverse model of M is denoted
by M−1, i.e. M−1 is the reflection of M with respect to some chord of the
circle. Unless otherwise stated, we always assume that A = {A1, . . . , An} where
Ai = (si, ti). Moreover, in a traversal of C the order in which the start points
appear is s1, . . . , sn. The set si, . . . , sj (ti, . . . , tj), 1 ≤ i < j ≤ n, is called an
s-range (t-range) with ∅ being the empty s-range (t-range). Similarly, a set of
contiguous extremes is an st-range, and Ai, . . . , Aj is a range. Without loss of
generality, all arcs of C are considered as open arcs, no two extremes of distinct
arcs of A coincide and no single arc entirely covers C.



A Simple Linear Time Algorithm 357

When no arc of A contains any other, (C, A) is a proper circular-arc (PCA)
model. A (proper) interval model is a (proper) CA model where

⋃
A∈A A �= C.

A CA (PCA) graph is the intersection graph of a CA (PCA) model. A (proper)
interval graph is the intersection graph of a (proper) interval model. We may
use the same terminology used for vertices when talking about arcs (intervals).
For example, we say an arc in a CA model is universal when its corresponding
vertex in the intersection graph is universal. Similarly, a connected model is one
whose intersection graph is connected.

Let Σ be an alphabet. A string S (over Σ) is a sequence S(1), . . . , S(|S|)
where |S| is the length of S. The set {1, . . . , |S|} is the set of positions of S. For
positions i < j we denote by S[i; j] the substring S(i), . . . , S(j). If < is a total
order over Σ, then <lex denotes the lexicographical order of strings, i.e. S <lex T
if and only if there exists k < |T | such that S(i) = T (i) for all 1 ≤ i ≤ k and
either k = |S| or S(k + 1) < T (k + 1). The rotation S � i is the string S[i; |S|]
followed by string S[1; i − 1]. Position i is canonical if S � i ≤lex S � j for
every 1 ≤ j ≤ |S|. Observe that since < is a total order, then S � i = S � j
for every pair i, j of canonical positions.

2 PCA Representations

Let M = (C, A) be a PCA model of a graph G and fix some arc Ai = (si, ti) ∈ A.
The arc representation Ri(M) of M is a string obtained by transversing C from
si and writing the character ‘aj+1’ (‘bj+1’) when si+j (ti+j) is reached. Thus, the
j-th start (end) point that appears after si (ti) is designated with the character
‘aj+1’ (‘bj+1’). Observe that we consider the order s1, . . . , sn to be fixed for M,
but in a computer program we do not have access to this order. What we have
is an arc representation that allows us to gain access to that order.

It is clear that there are at most n different arc representations of M, one
for each arc Ai. Algorithms on (proper) CA graphs usually perform a linear
time preprocessing on its input, given as an arc representation. For instance, by
simply transversing the representation it is possible to build a data structure
where ti can be found in O(1) time, given si.

Arc representations have a lot of redundant information for encoding PCA
models. Fix some arc Ai ∈ M. The extreme sequence (of M) from si is the
string Ei(M) that is obtained by replacing ‘aj’ (‘bj’) with ‘a’ (‘b’) in Ri(M) for
every 1 ≤ j ≤ n. In other words, Ei(M) is the string obtained by transversing
C from si and writing the character ‘a’ (‘b’) when a start point (an end-point)
is reached. The mark point (of M) from si is the position ti(M) where ‘b1’
appears in Ri(M). Define the function r, such that r(Ei(M), ti(M)) is the
string obtained from Ei(M) by replacing the j-th character ‘a’ with ‘aj’ and the
j-th character ‘b’ that appears from position ti(M) with character ‘bj’.

Remark 1. Function r is a bijection between r(Ei(M), ti(M)) and Ri(M).
Moreover, r and r−1 can both be computed in O(n) time.

Remark 2. For 1 ≤ i, j ≤ n, Ri(M) = Rj(M) if and only if Ei(M) = Ej(M)
and ti(M) = tj(M).
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From now on we may not write the superscripts if we want to refer to any
representation of M. Also, when M is understood, we do not write it explicitly
as a parameter. Let M be a PCA model. Extreme representation (E, t) uses
only O(n) bits while R uses O(n log n) bits. However, some operations, as taking
the end point of some arc when the start point is given, are not (a-priori) fast
enough when using (E, t). This is why in this work and others (see e.g. [1,16])
arc representations are taken as the input of the algorithms. When we say that
these algorithms run in O(n) time when an arc representation is given what we
mean is that they run in O(n) time where n is the length of codification R.
But if we instead use (E, t) as input, we have to build R first, so the algorithms
take O(n log n) time where n is the length of (E, t). With this in mind, when
we say that M is given as input, we mean that an arc representation (or some
linear-time preprocessing of it) is given as input.

Let M, N be two PCA models with n arcs. We write M =M N (M is
equal to N ) if Ri(M) = Rj(N ) for some 1 ≤ i, j ≤ n. This is what one would
intuitively assume as equality of models, i.e., do they have the extremes in the
same order? Clearly, if two PCA models are equal then their intersection graphs
are isomorphic, but the converse is not always true. Testing if two PCA models
are equal can be trivially done in O(n2) time by fixing some 1 ≤ i ≤ n and then
testing whether Ri(M) = Rj(N ) for every 1 ≤ j ≤ n. However this can also be
verified in O(n) time.

3 Basic Algorithms

In this section we describe linear-time algorithms that we use several times in
the paper. Below is the list of problems we need to solve throughout the paper:

– Is a PCA graph co-bipartite? If so, give a unique co-bipartition of its co-
components.

– Compute the components of a PCA graph.
– Is the intersection graph of a PCA model an interval graph? If so, output a

proper interval model [15].
– Find all canonical positions of a circular string [2,20].

In the next subsections, we show how to solve each of the above problems and
discuss the complexities of the corresponding algorithms. The proposed solutions
are easy to implement. Furthermore, we believe they are of interest on their own.

3.1 Co-bipartitions of the Co-components of a PCA Graph

The first problem we need to solve is to determine whether a PCA graph is
co-bipartite and, if so, output the co-bipartitions of its co-components. The fol-
lowing algorithm determines the co-component of a graph G, containing a given
vertex v ∈ V (G).

Algorithm 1. Co-component containing v in a graph G
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1. Unmark all vertices and define V 0
1 := {v}, V 0

2 := ∅ and k = 0.
2. While there exists an unmarked vertex w ∈ V k

1 ∪ V k
2 , perform the following

operation. Let i, j ∈ {1, 2}, such that v ∈ V k
i and j �= i. Mark v and compute

V k+1
i := V k

i , V k+1
j := V k

j ∪ N(w) and k := k + 1.

3. Output V1 := V k
1 , V2 := V k

2

Lemma 1. V1 ∪ V2 is the co-component containing v in G. Moreover, V1, V2 is
a co-bipartition if and only if V1 ∩ V2 = ∅.

For the general case this algorithm can be implemented in O(n2) time. Next, we
consider that G is a PCA graph given by a PCA model M. Define a subset of
V (G) to be a range whenever their corresponding arcs in M form a range. The
following lemma is relevant to our purposes.

Lemma 2. At every step k, V k
1 and V k

2 are ranges.

Proof. Clearly V 0
1 and V 0

2 are ranges. Now consider the k-th iteration and let
i, j and w ∈ V k

i be as in Step 2. Since G is a PCA graph, N(w) is a range.
If N(w) ∩ V k

j = ∅, then w = v and k = 0, thus V 1
j = N(w) corresponds to a

range. If N(w) ∩ V k
j �= ∅ then it follows that k > 0 and V k

j is a range by the
inductive hypothesis. Hence N(w)∪V k

j is also a range, because the union of two
intersecting ranges is a range. 	


Now we consider the complexity of the algorithm when a PCA ordering of the
vertices is given. Let i, j and k be as in Step 2, Vi = V k

i and Vj = V k
j . By Lemma

2, Vi is a range. The invariant we use is that Vi is partitioned into three ranges
Li, Ci and Ri, where Li, Ci, and Ri appear in this order. The set Vj has an
analogous partition Lj , Cj and Rj . The set of marked vertices of Vi is Ci, while
Li ∪ Ri is the set of unmarked vertices. To maintain the invariant, vertex w can
be selected from Vi if and only if Ci ∪{w} is also a range, thus there are at most
four unmarked vertices that could be selected at each step. Suppose w is chosen
from Li. For the next iteration we have to modify each of the ranges to reflect
the inclusion of N(w).

For the implementation, each range in the algorithm can be represented by
a pair of integers, the low index and the high index, corresponding to the first
and the last vertices of the range. Before applying the algorithm, range N(v)
can be found for every vertex v in O(n) time. Hence, Vj ∪ N(w) in Step 2 can
be computed in constant time. For this, the low index of Lj is updated to the
smallest of the low indices of Lj and N(w). Similarly, for the high index of Rj

we would choose the greatest of the two high indices. Finally, the mark of w is
done by decreasing by one the high index of Li and increasing by one the low
index of Ci when w ∈ Li. The case when w ∈ Ri is analogous. With such an
implementation, each iteration of Step 2 takes O(1) time, thus each component
C can be found in O(|C|) time. That is in overall O(n) time the algorithm finds
the co-bipartitions of all co-components.
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3.2 Components of a PCA Graph

The second problem we solve is how to find the components of a PCA graph,
when the input is a PCA model M. A leftmost arc is an arc whose start point
is not contained in any arc. When the graph is not connected, every model has
at least two leftmost arcs. It is easy to find every leftmost arc in O(n) time
by traversing twice the circle. In the first traversal mark Ai when si is crossed,
and then unmark Ai when ti is crossed. In the second traversal, the start points
having no marks when crossed correspond to leftmost arcs. Conversely, the start
points that are crossed when there are marks are not from leftmost arcs. Now, if
Ai and Aj are leftmost arcs with no leftmost arc between them then Ai, . . . , Aj−1
is the range corresponding to the component of Ai. To sum up, the components
of a PCA graph can be found in O(n) time.

3.3 PCA Representation of Interval Graphs [15]

The third problem is to determine whether the intersection graph G of a PCA
model M = (C, A) is an interval graph. If affirmative, then we need to construct
a proper interval model. We can check if M is an interval model in O(n) time by
checking if it contains any leftmost arc. In this case the output is M. But if G
is an interval graph and M is not an interval model, we can transform it into an
interval model in O(n) time, employing the algorithm described in [15]. There,
it is shown that M must have three arcs covering the circle. Moreover, one of
these arcs, say (s, t), must be universal. Then M′ = (C, (A \ {(s, t)}) ∪ {(t, s)})
is a proper interval model of G.

3.4 Minimum Circular String [2,20]

Finally we need to find the minimum of a circular string. The minimum circular
string problem is to find every canonical position of S. For this it is enough to
find one canonical position i and a period w such that i + kw is canonical for
every k ≥ 0. This problem can be solved in O(n) comparisons over the alphabet
Σ [2,20].

4 Canonical Representation of PCA Models

In this section we describe how to canonize a representation of a PCA model, so
that equality of models can be tested by equality of representations. What we
want is a function C from models to arc representations, so that C(M) = C(N )
if and only if M =M N . The idea is to take the “minimum” arc representation as
the canonical representation. Fix a PCA model M and let ‘a’ < ‘b’. Define ≺ as
the order over the arcs, where Ai ≺ Aj if and only if Ei <lex Ej . Define also, <R

as the total order over arc representations where Ri(M) <R Rj(N ) if and only
if either Ei(M) <lex Ej(N ) or Ei(M) = Ej(N ) and ti(M) < tj(N ). Arc Ai is
canonical if Ai is minimum with respect to ≺ and Ri is a canonical representation
when Ri is minimum with respect to <R. Since Ri can be uniquely determined
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from (Ei, ti) then <R is a total order and therefore the canonical representation
of M is unique. That is, if Ri and Rj are canonical representations then Ri = Rj .

Proposition 1. Let M be a PCA model and 1 ≤ i, i + j ≤ n. Then Ei+j =
Ei � j and tj = bj − aj + 1, where aj (bj) is the position of the j-th ‘a’ (‘b’) in
Ri.

Theorem 1. Let M be a PCA model. Then Ai is a canonical arc if and only if
Ri is a canonical representation of M.

Proof. If Ai is not a canonical arc, then there exists Aj ≺ Ai. Consequently
Ej <lex Ei which implies that Rj <R Ri, so Ri is not a canonical representation.

Now suppose that Ai is a canonical arc, and let Ri+j be a canonical represen-
tation of M. Then both Ei and Ei+j are minimum sequences with respect to
<lex, so Ei = Ei+j . By Remark 2, it is enough to see that ti = ti+j . Let ak be
the position of ‘ak’ in Ri and bk be the position of ‘bk’ in Ri for every 1 ≤ k ≤ n.
By Proposition 1, Ei+j = Ei � aj and ti+j = bj − aj + 1.

Since Ei = Ei+j = Ei � aj and there is the same quantity of symbols ‘a’
and ‘b’ in Ei, then in Ei[1 + k; aj + k − 1] there is also the same quantity of ‘a’
and ‘b’ for every 1 ≤ k ≤ 2n − aj + 1. Moreover, this quantity must be j − 1
because in Ei[1; aj − 1] there are j − 1 characters ‘a’. Then, in E[b1; aj + b1 − 2]
there are j − 1 characters ‘b’ and Ei(aj + b1 − 1) is also a ‘b’. Consequently
bj = aj + b1 − 1, because bj is the position of the j-th character ‘b’ after b1.
Hence ti+j = bj − aj + 1 = b1 = ti as required. 	

From now on, we denote by C(M) the unique canonical representation of M.
The algorithm we present below finds C(M) for a PCA model M using some
arc representation Ri as input.

Algorithm 2. Canonical representation of model M
1. Compute Ei and ti.
2. Find some canonical position ac of Ei that corresponds to some character

‘ac’ in Ri, and let bc be the position of character ‘bc’ in Ri.
3. Output r(Ei � ac, ac − bc + 1).

The algorithm finds C(M) by Remark 1, Proposition 1 and Theorem 1. With
respect to its time complexity, Step 1 can be done in O(n) time by Remark 1,
Step 2 takes O(n) time as shown in Subsection 3.4, and Step 3 takes O(n) time
by Remark 1. Thus the time complexity is O(n).

In the next section we show how to find a unique canonical model M(G) of
a PCA graph G, so that C(M(G)) is the unique canonical representation of a
PCA graph.

5 Canonical Models of PCA Graphs

We divide the canonization of PCA graphs in three non-disjoint cases. These
are the connected PCA graphs which are co-connected or non co-bipartite, the
proper interval graphs, and the co-bipartite PCA graphs.
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In this section we need to sort models according to their canonical represen-
tations. Define <M as the total order between models where M1 <M M2 if and
only if C(M1) <R C(M2). Note that M1 =M M2 if and only if M1 �<M M2
and M2 �<M M1 because C(M1) is unique. Although <M corresponds to a
natural way to compare models, it does not behave so well for the sorting. Nev-
ertheless, all the information in C(M) can be encoded nicely into a somehow
compressed string by combining E(M) and t(M). Let (E(M), t(M)) be the
extreme representation r−1(C(M)) for a model M. Define S(M) as the string
that is obtained from E(M) by replacing the character ‘b’ at position t(M) with
a character ‘m’. Extend < so that ‘a’ < ‘m’ < ‘b’.

Proposition 2. M1 <M M2 if and only if S(M1) <lex S(M2).

Now, if {M1, . . . , Mk} is a multiset of models, we can lexicographically sort it
in O(

∑k
i=1 |Mi|) time using the well known most significant digit (MSD) radix

sort algorithm.

5.1 Connected PCA Graphs Which Are Co-connected or Non
Co-bipartite

We start first with the connected PCA graphs which are co-connected or non
co-bipartite. The motivation for considering this case is the following theorem.

Theorem 2 ([6]). Connected PCA graphs which are co-connected or non co-
bipartite have at most two non-equal models, one being the reverse of the other.

Let M be a PCA model of a connected PCA graph which is co-connected or
non co-bipartite G. Define M(G) as the minimum of M and M−1 with respect
to <M ; M(G) can be computed in O(n) time.

Corollary 1. Let G1, G2 be two connected PCA graphs which are co-connected
or non co-bipartite. Then G1 is isomorphic to G2 if and only if M(G1) =M

M(G2)

5.2 Proper Interval Graphs

The second class is that of proper interval graphs. As for PCA graphs, we employ
a basic theorem.

Theorem 3 ([6,19]). Connected proper interval graphs have at most two non-
equal proper interval models, one being the reverse of the other.

Extend M(G) to connected proper interval graphs, i.e. if M is a proper interval
model of a connected graph G, define M(G) as the minimum between M and
M−1.

Corollary 2. Let G1, G2 be two connected proper interval graphs. Then G1 is
isomorphic to G2 if and only if M(G1) =M M(G2).
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Now, let G be a proper interval graph and G1, . . . , Gk be its components, where
M(Gi) ≤M M(Gi+1). Extend M(G) to the model where the circle is parti-
tioned into k consecutive segments S1, . . . , Sk and M(Gi) is contained in the
i-th segment that appears in a traversal of the circle (see Figure 5.2). Clearly,
M(G) is a proper interval model of G and is uniquely defined.

. . .

M(G1) M(G2) M(Gk) M(G)

Fig. 1. The figures, except the last one, show the k segments whose corresponding
models lie in M(G), whereas the last figure depicts M(G) itself

Theorem 4. Let G1, G2 be two proper interval graphs. Then G1 is isomorphic
to G2 if and only if M(G1) =M M(G2).

We describe below the algorithm to find M(G) for proper interval graphs when
the input is (any arc representation of) M.

Algorithm 3. Canonical model of a proper interval graph G.

1. Let M be some proper interval model of G
2. Find the components M1, . . . , Mk of M.
3. Define M(i) as the minimum of Mi and M−1

i for 1 ≤ i ≤ k.
4. Sort the multiset {M(1), . . . , M(k)} so that M(i) ≤M M(i + 1) for every

1 ≤ i < k.
5. Output the model with k segments where M(i) is contained in the i-th

segment.

We now consider the complexity of the algorithm when M is given as in Step
1. Step 2 can be solved in O(n) time as in Subsection 3.2, where we obtain a
range representing each component. Step 3 is done by reversing Mi and then
comparing Mi and M−1

i . Both the reversal and the comparison can be computed
in O(|Mi|) for 1 ≤ i ≤ k. Step 4 can done as explained at the beginning of this
section in O(n) time. For Step 5 traverse the range corresponding to Mi that
was obtained in Step 1 and insert it into the new circle. The algorithm then runs
in O(n) time.

5.3 Canonization of Co-bipartite PCA Graphs

Finally we consider co-bipartite PCA graphs. The algorithm for this class of
graphs is quite similar in its concept to the one for proper interval graphs. For
co-connected PCA graphs M(G) has already been defined in Subsection 5.1.
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Consider a co-connected co-bipartite PCA graph G and denote by A1, A2
the co-bipartition of M(G). By Lemma 2, both A1 and A2 are ranges. Assume
w.l.o.g. that A1 is the first arc of range A1 and Ai is the first arc of range A2.
Moreover, assume that s1 is represented by ‘a1’ in C(M(G)). In the segment
(si−1, t1) there is no start point of arcs in A2, because otherwise every arc of A1
would contain these start points. Consequently, (si−1, t1) is a segment contained
by all the arcs of A1 that is not crossed by any arcs of A2. Moreover, (si−1, t1)
is the unique maximal segment in these conditions. The same argument can be
applied interchanging A1 with A2. But in the case where A2 is empty and A1
has only one universal arc A1, then (t1, s1) is the required segment. This means
that X = {ti, . . . , tn} ∪ {s1, . . . , si−1} and Y = {t1, . . . , ti−1} ∪ {si, . . . , sn} are
two st-ranges that define M(G) (see Figure 2(a)). We call these two st-ranges
as co-bipartition ranges, where X is the low co-bipartition range and Y is the
high co-bipartition range. Observe that low and high are well defined for M(G),
because X contains ‘a1’ in C(M(G)).

Now we show a unique way to accommodate the co-components when the
PCA graph is not co-connected (see also [6]). This is rather similar to what we
did in the previous section. Let G be a non interval co-bipartite PCA graph and
G1, . . . , Gk be its co-components where M(Gi) ≤M M(Gi+1) for 1 ≤ i ≤ k.
Let Xi, Yi be the respective low and high co-bipartitions ranges of M(Gi) for
1 ≤ i < k. Define M(G) as the model where the circle is partitioned into 2k
consecutive segments. The i-th segment in a traversal of the circle contains Xi

and the i + k segment contains Yi for 1 ≤ i ≤ k (see Figure 2). It is not hard
to see that M(G) is a PCA model of G, because the model induced by the arcs
in segments i and i + k is precisely M(Gi) and every arc with one extreme in
segment i intersects every arc with one extreme in segment j for 1 ≤ i < j ≤ k.

. . .

(a) M(H) (b) M(G1) (c) M(Gk) (d) M(G)

Fig. 2. Figure (a) shows the high co-bipartition range {ti, . . . , tn} ∪ {s1, . . . , si−1} and
the low co-bipartition range {t1, . . . , ti−1} ∪ {si, . . . , sn} of a co-connected co-bipartite
graph. Figures (b) and (c) show the co-bipartition ranges of the co-components of G
in their corresponding segments. In (d) the whole picture of M(G) is shown.

Theorem 5. Let G1, G2 be two non interval co-bipartite PCA graphs. Then G1
is isomorphic to G2 if and only if M(G1) =M M(G2).

The algorithm to find a canonical representation of a co-bipartite PCA graph is
very similar to the one for a proper interval graph. The two main changes are
that components are replaced by co-components in Steps 2-5, and that the circle
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is partitioned into 2k segments, where segments from 1 to k contain the low co-
bipartition ranges and segments from k+1 to 2k contain the high co-bipartition
ranges (Step 6). Since both the co-components and the co-bipartition ranges can
be found in O(n) time, as in Section 3.1, the whole algorithm for this case takes
O(n) time.

6 Putting It All Together

Function M as defined in the previous section maps every PCA graph to a PCA
model. However, it should be mentioned that if G is both proper interval and co-
bipartite, then M(G) is computed as in Subsection 5.2. The complete algorithm
is depicted below.

Algorithm 4. Canonical representation of a PCA graph G

1. If G is an interval graph, then compute M(G) as in Subsection 5.2.
2. Else if G is a co-bipartite model then compute M(G) as in Subsection 5.3.
3. Otherwise, compute M(G) as in Subsection 5.1.

Finally we discuss the complexity of the entire algorithm. The input of the
algorithm is a PCA model as in Step 1. This model is encoded as an arc repre-
sentation, which is obtained as the output of the recognition algorithm for PCA
graphs [6]. We can check if G is an interval graph as in Subsection 3.3 in O(n)
time. If so, we obtain a proper interval model that we can use in Step 1 to find
M(G) in O(n) time. The rest of the algorithm takes O(n) time as explained in
the previous section. When the input is G instead of M, the algorithm takes
O(n + m) time by first computing a PCA model [6].

Theorem 6. Let G and H be two PCA graphs. Then the following are equiva-
lent:

1. G and H are isomorphic,
2. M(G) =M M(H),
3. C(M(G)) = C(M(G)).

Proof. It is a direct consequence of Corollary 1 and Theorems 4 and 5, and the
fact that M is a well defined function. 	

Corollary 3. The isomorphism problem for PCA graphs can be solved in O(n)
time when a PCA models model is given as input, or in O(n + m) time when
the input is a graph given by its sets of vertices and edges.
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