
Propiedad de Helly, transversal, cover, packing y
partition

Problemas de Grafos y Tratabilidad Computacional



Definiciones

Dada una familia de subconjuntos F = {S1, · · · , Sn}, llamamos
U =

⋃
Si∈F Si su universo asociado.

▶ F es intersecante si ∀Si , Sj ∈ F ′, Si ∩ Sj ̸= ∅.
▶ F verifica ((propiedad de Helly)) si para toda subfamilia

intersecante F ′ ⊆ F cumple
⋂

Si∈F ′ Si ̸= ∅.
▶ Un subconjunto T ⊆ U es transversal de F si ∀Si ∈ F ,

T ∩ Si ̸= ∅.
▶ Una subfamilia F ′ ⊆ F es set-cover si U =

⋃
Si∈F ′ Si .

▶ Una subfamilia F ′ ⊆ F es set-packing si ∀Si ,Sj ∈ F ′,
Si ∩ Sj ⇔ i = j .

▶ Una subfamilia F ′ ⊆ F es set-partition si es al mismo tiempo
set-cover y set-packing.



Algoritmo de Berge

Dada una familia de subconjuntos F = {S1, · · · , Sn} y
U =

⋃
Si∈F Si su universo asociado.

1. Para cada subconjunto de 3 elementos T ⊆ U hacer

2. Generar FT = {Si ∈ F / |Si ∩ T | ≥ 2}
3. Si FT ̸= ∅ y

⋂
Si∈FT

Si = ∅ entonces devolver Falso

4. Devolver Verdadero

Preguntas:

▶ ¿Para qué sirve el algoritmo?

▶ ¿Cuál es la complejidad?

▶ ¿Por qué es correcto?



Más definiciones
Sea F = {N[v ] / v ∈ V } la familia de vecindad cerrada de un
grafo G = (V ,E ).

▶ G es closed neighborhood-Helly si F cumple propiedad de
Helly.

▶ G es closed neighborhood-Helly hereditario si todos sus
subgrafos inducidos son neighborhood-Helly.

▶ El problema de set-cover ḿınimo en este caso se llama
conjunto dominante ḿınimo. (dominación)

▶ El problema de transversal ḿınimo también mapea al
problema de dominación de vértices.

▶ El problema de set-packing máximo en este caso es el
problema de conjunto independiente máximo para G 2.

▶ El problema de set-partition en este caso se llama dominación
eficiente.

Podemos considerar también familias de otros tipos de estructuras:
vecindad abierta, clique, etc.



Teorema

Los siguientes problemas son equivalentes en términos de
complejidad.

1. El problema de set-cover ḿınimo para una familia F de
subconjuntos.

2. El problema dominación de vértices para un grafo split G .

3. El problema clique-transversal para un grafo split G .



Otras definiciones

Dado un grafo G = (V ,E )

▶ Denotamos N[v ,w ] la intersección de las vecindades cerradas
de v y w (N[v ,w ] = N[v ] ∩ N[w ]).

▶ Dados v ,w ∈ V y v ̸= w , definimos su conjunto universal
como U[v ,w ] = {u ∈ V / N[v ,w ] ⊆ N[u]}. El conjunto
universal de vértices v ,w , z ∈ V es
U[v ,w , z ] = U[v ,w ] ∩ U[w , z ] ∩ U[z , v ].

▶ Definimos la extensión de vértices v ,w , z ∈ V es
E (v ,w , z) = N[v ,w ] ∪ N[w , z ] ∪ N[z , v ] si
N[v ,w ],N[w , z ],N[z , v ] ̸= ∅ y E (v ,w , z) = ∅ caso contrario.

▶ Sean C1, · · · ,Ck y v1, · · · , vn los cliques y los vértices de G ,
respectivamente. Llamamos M ∈ {0, 1}k×n la matriz clique de
G donde mij = 1 si vj ∈ Ci . Llamamos A∗ la matriz de
adyacencia aumentada de G que es la matriz de adyacencia A
de G agregando 1’s en la diagonal principal.



Más definiciones

▶ Una matriz de permutación se obtiene de realizar
permutaciones de filas de la matriz identidad.

▶ Una matriz de co-permutación es el resultado de invertir los
ceros y unos de una matriz de permutación.



Teorema

Dado un grafo G = (V ,E ), las siguientes afirmaciones son
equivalentes.

1. G es clique-Helly.

2. Para cada extensión E (v ,w , z) donde v ,w , z inducen un
triángulo de G , existe u ∈ V tal que E (v ,w , z) ⊆ N[u].

3. Para cada extensión E (v ,w , z) ̸= ∅ donde v ,w , z inducen un
triángulo de G , entonces U[v ,w , z ] ̸= ∅.



Teorema

Dado un grafo G = (V ,E ), las siguientes afirmaciones son
equivalentes.

1. G es clique-Helly hereditario.

2. G no tiene como subgrafos inducidos a los grafos oculares
(3-sun,P2 + P4,E ,3K2).

3. Para cada extensión E (v ,w , z) donde v ,w , z inducen un
triángulo de G , existe u ∈ {v ,w , z} tal que E (v ,w , z) ⊆ N[u].

4. Para cada extensión E (v ,w , z) ̸= ∅ donde v ,w , z inducen un
triángulo de G , entonces U[v ,w , z ] ∩ {v ,w , z} ≠ ∅.

5. La matriz clique M de G no contiene ninguna submatriz de
co-permutación de 3× 3.



Teorema

Dado un grafo G = (V ,E ), las siguientes afirmaciones son
equivalentes.

1. G es closed neighborhood-Helly.

2. Para cada extensión E (v ,w , z) de G , existe u ∈ V tal que
E (v ,w , z) ⊆ N[u].

3. Para cada extensión E (v ,w , z) ̸= ∅ de G , entonces
U[v ,w , z ] ̸= ∅.



Teorema

Dado un grafo G = (V ,E ), las siguientes afirmaciones son
equivalentes.

1. G es closed neighborhood-Helly hereditario.

2. G no tiene como subgrafos inducidos a C4,C5,C6 ni 3-sun.

3. Para cada extensión E (v ,w , z) de G , existe u ∈ {v ,w , z} tal
que E (v ,w , z) ⊆ N[u].

4. Para cada extensión E (v ,w , z) ̸= ∅ de G , entonces
U[v ,w , z ] ∩ {v ,w , z} ≠ ∅.

5. La matriz adyacencia aumentada A∗ de G no contiene
ninguna submatriz de co-permutación de 3× 3.



Teorema

Dado un grafo G = (V ,E ), las siguientes afirmaciones son
equivalentes.

1. G es open neighborhood-Helly.

2. G es K3-free y para cada extensión E (v ,w , z) donde v ,w , z
inducen un co-triángulo de G , existe u ∈ V tal que
E (v ,w , z) ⊆ N[u].

3. G es K3-free y para cada extensión E (v ,w , z) ̸= ∅ donde
v ,w , z inducen un co-triángulo de G , entonces U[v ,w , z ] ̸= ∅.



Teorema

Dado un grafo G = (V ,E ), las siguientes afirmaciones son
equivalentes.

1. G es open neighborhood-Helly hereditario.

2. G no tiene como subgrafos inducidos a C6 ni triángulo.

3. G es K3-free y para cada extensión E (v ,w , z) inducen un
co-triángulo de G , existe u ∈ {v ,w , z} tal que
E (v ,w , z) ⊆ N[u].

4. G es K3-free y para cada extensión E (v ,w , z) ̸= ∅ inducen un
co-triángulo de G , entonces U[v ,w , z ] ∩ {v ,w , z} ≠ ∅.

5. La matriz adyacencia A de G no contiene ninguna submatriz
de co-permutación de 3× 3.
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1 INTRODUCTION

Denote by G a finite simple graph, with vertex set V (G) and edge set E(G). We use n and m
to denote |V (G)| and |E(G)|. A complete set is a subset V ′ ⊆ V (G) formed by pairwise adjacent
vertices and a clique is a maximal complete set. A triangle is a complete set of size 3 and a
subset of vertices is a co-triangle when it is a triangle in G, the complement of G. Denote by
N(vi) = {vj ∈ V (G)|(vi, vj) ∈ E(G)}, and N [vi] = N(vi)∪{vi}, the open and closed neighborhoods
of G, respectively. The degree of a vertex vi, d(vi), is |N(vi)| and the maximum degree of G is
denoted by ∆. For V ′ ⊆ V (G), G[V ′] is the subgraph of G induced by V ′.
Let F be a family of subsets of some set. Say that F is intersecting when the subsets of F pairwise
intersect. On the other hand, when every intersecting subfamily of F has a common element then
F is a Helly family. The best general algorithm for recognizing Helly families is due by Berge [2].
A graph G is clique-Helly when its family of cliques is Helly. Similarly, G is open neighborhood-
Helly (closed neighborhood-Helly) when its family of open neighborhoods (closed neighborhoods) is
Helly. Finally, G is hereditary clique-Helly (hereditary open neighborhood-Helly, hereditary closed
neighborhood-Helly) when every of its induced subgraphs is clique-Helly (open neighborhood-Helly,
closed neighborhood-Helly).
Different characterizations were given for these six graph classes and most of them lead to
polynomial-time recognition algorithms: clique-Helly graphs [3, 8]; hereditary clique-Helly graphs
[7, 9]; closed neighborhood-Helly graphs [3, 5]; open neighborhood-Helly graphs [5]; hereditary
closed neighborhood-Helly graphs [4]; hereditary open neighborhood-Helly graphs [4].
The extension type characterizations for clique-Helly graphs of [1, 8] and for hereditary clique-Helly
graphs of [7] have been recently reformulated in [6] (Theorem 2.1 and Theorem 2.4, respectively)
leading to more efficient recognition algorithms.
In this work, we describe different characterizations, based on the concept of extensions, for the
classes of neighborhoood-Helly graphs, open and closed. In addition, we also describe characteri-
zations for their corresponding hereditary classes. These results are describes in Section 2.
These characterizations lead to new recognition algorithms for neighborhood-Helly graph classes.
Finally, in Section 3, we describe some matrix characterizations for hereditary Helly classes.

2 EXTENSION TYPE CHARACTERIZATIONS

First, we need some additional definitions.
Denote by N [v,w] the intersection of N [v] and N [w], i.e. N [v,w] = N [v] ∩ N [w]. On the other
hand, we define the universal set of v,w as: U [v,w]= {u ∈ V (G)/N [v,w] ⊆ N [u]}. The universal
set of u, v,w is defined as: U [u, v,w]= U [u, v] ∩ U [v,w] ∩ U [u,w].
Define the extension of vertices u, v,w, as E(u, v,w)= N [u, v] ∪ N [v,w] ∪ N [u,w], whenever
N [u, v], N [v,w], N [u,w] 6= ∅, and E(u, v,w) = ∅ otherwise.
Now, we are ready to describe the following theorems, which characterize all the above mentioned



Helly classes, in terms of extensions E(u, v,w) and universal sets U [u, v,w]. Theorem 2.3 is a
reformulation of the results given in [5].

Theorem 2.1 [1, 8, 6] A graph G is clique-Helly if and only if for every extension E(u, v,w)
such that u, v,w induce a triangle, there exists a vertex z ∈ V (G) such that E(u, v,w) ⊆ N [z], i.e.
U [u, v,w] 6= ∅.

Theorem 2.2 A graph G is closed neighborhood-Helly if and only if for every extension E(u, v,w),
there exists a vertex z ∈ V (G) such that E(u, v,w) ⊆ N [z], i.e. U [u, v,w] 6= ∅.

Theorem 2.3 [5] A graph G is open neighborhood-Helly if and only if does not contain triangles
and for every extension E(u, v,w) of vertices u, v,w that induce a co-triangle, there exists a vertex
z ∈ V (G) such that E(u, v,w) ⊆ N [z], i.e. U [u, v,w] 6= ∅.

Theorem 2.4 [7, 6] A graph is hereditary clique-Helly graph if and only if for every exten-
sion E(u, v,w) such that u, v,w induce a triangle, there exists a vertex z ∈ {u, v,w} such that
E(u, v,w) ⊆ N [z], i.e. U [u, v,w] ∩ {u, v,w} 6= ∅ or E(u, v,w) = ∅.

Theorem 2.5 A graph is hereditary closed neighborhood-Helly graph if and only if for every
extension E(u, v,w) such that u, v,w induce a triangle, there exists a vertex z ∈ {u, v,w} such
that E(u, v,w) ⊆ N [z], i.e. U [u, v,w] ∩ {u, v,w} 6= ∅ or E(u, v,w) = ∅.

Theorem 2.6 A graph is hereditary open neighborhood-Helly graph if and only if it does not
contain triangles and for every extension E(u, v,w) of vertices u, v,w that induce a co-triangle,
there exists a vertex z ∈ {u, v,w} such that E(u, v,w) ⊆ N [z], i.e. U [u, v,w] ∩ {u, v,w} 6= ∅ or
E(u, v,w) = ∅.

The formulations of these characterizations clearly show the relations between all classes.
Finally, these characterizations allow new recognition algorithms and their complexities are sum-
marized in Table 1 (most of them improve time complexities of previous algorithms).

3 MATRIX CHARACTERIZATIONS

We also characterize hereditary clique-Helly (hereditary closed neighborhood-Helly, hereditary
open neighborhood-Helly) graphs from another point of view. We characterize them by forbidden
submatrices of the incidence matrix of the graph.
We need some additional definitions.
Let C1, . . . , Ck and v1, . . . , vn be the cliques and vertices of a graph G, respectively. We define
M a clique matrix of G, as a 0-1 matrix whose entry (i, j) is 1 if vj ∈ Ci and 0 otherwise. The
augmented adjacency matrix A∗ of G is the one obtained from the adjacency matrix A of G,
by setting to 1 each entry of its main diagonal. A permutation matrix is a matrix obtained by
permuting the rows of an n × n identity matrix according to some permutation of the numbers 1
to n. Every row and column therefore contains precisely a single 1 with 0s everywhere else, and
every permutation corresponds to a unique permutation matrix. A co-permutation matrix is one
obtained from a permutation matrix, by replacing each 0 by 1 and each 1 by 0.
The following theorems show a relationship between the hereditary Helly property and co-permuta-
tion matrices.



Theorem 3.1 [9] A graph G is hereditary clique-Helly if and only if its clique matrix M does not
contain any co-permutation 3 × 3 submatrix.

Theorem 3.2 A graph G is hereditary closed neighborhood-Helly if and only if its augmented
adjacency matrix A∗ does not contain any co-permutation 3 × 3 submatrix.

Theorem 3.3 A graph G is hereditary open neighborhood-Helly if and only if its adjacency matrix
A does not contain any co-permutation 3 × 3 submatrix.

REFERENCES

[1] H. J. Bandelt, M. Farber and P. Martin. Absolute reflexive retracts and absolute bipartite
retracts. Discrete Appl. Math., 44, 9–20, (1933).

[2] C. Berge. Graphes et Hypergraphes. Dunod, Paris, 1970. (Graphs and Hypergraphs, North-
Holland, Amsterdam, 1973, revised translation).

[3] F. F. Dragan. Centers of Graphs and the Helly Property (in russian). Ph. D. Thesis, Moldava
State University, Chisinǎu, 1989.
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Abstract

A family of subsets of a set is Helly when every subfamily of it, which is formed by pairwise intersecting subsets contains a
common element. A graph G is clique-Helly when the family of its (maximal) cliques is Helly, while G is hereditary clique-Helly
when every induced subgraph of it is clique-Helly. The best algorithms currently known to recognize clique-Helly and hereditary
clique-Helly graphs have complexities O(nm2) and O(n2m), respectively, for a graph with n vertices and m edges. In this Note,
we describe algorithms which recognize both classes in O(m2) time. These algorithms also reduce the complexity of recognizing
some other classes, as disk-Helly graphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Helly property has been studied in many con-
texts, as in combinatorics and geometry. Within graph
theory, the Helly property has been applied to some
different families of sets. Its application to the (maxi-
mal) cliques of a graph is one of the most common. It
has lead to the classes of clique-Helly and hereditary
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clique-Helly graphs. Clique-Helly graphs have been
considered in many papers, [4,15,10,11,9], among oth-
ers. Hereditary clique-Helly graphs have been studied
in, e.g., [13,5]. Clique-Helly graphs have been charac-
terized in [8,16], while [13,17] contain characterizations
for hereditary clique-Helly graphs. These characteriza-
tions lead to recognition algorithms whose complexities
are O(nm2) for clique-Helly and O(n2m) for hereditary
clique-Helly graphs, where n and m are the number of
vertices and edges of the graph (see [6]). In this Note,
we describe algorithms which reduce the complexities
to O(m2), in both cases. We remark that all mentioned
algorithms are based on Berge’s basic test for Helly
hypergraphs [3]. Finally, we mention that hereditary
Helly hypergraphs can be also recognized in polynomial
time [7].

0020-0190/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2007.02.017



M.C. Lin, J.L. Szwarcfiter / Information Processing Letters 103 (2007) 40–43 41

Let G be an undirected graph with vertex set V (G)

and edge set E(G). Write ab to denote the edge of G,
formed by vertices a, b ∈ V (G). Represent by N(a) the
subset of vertices adjacent to a, and let N [a] = N(a) ∪
{a}. Write da = |N(a)|. For an edge ab ∈ E(G), de-
fine N(ab) = N(a) ∩ N(b) and N [ab] = N [a] ∩ N [b].
Clearly, N [ab] = N(ab) ∪ {a, b}. A vertex a ∈ V (G)

satisfying N [a] = V (G) is a universal vertex of G.
For V ′ ⊆ V (G), denote by G[V ′] the subgraph of G

induced by the vertices of V ′. Denote by U(ab) the
set of universal vertices of G[N(ab)]. Similarly, U [ab]
is the set of universal vertices of G[N [ab]]. Again,
U [ab] = U(ab) ∪ {a, b}.

Say that a family of subsets of some set is Helly when
every subfamily of it, which is formed by pairwise inter-
secting subsets, contains a common element. A clique
of a graph G is a maximal subset of pairwise adjacent
vertices. Say that G is clique-Helly when the family of
cliques of G form a Helly family, while G is heredi-
tary clique-Helly when every induced subgraph of G is
clique-Helly.

Let T ⊆ V (G) be a subset of three vertices, forming
a triangle. Denote by T ∗ ⊆ V (G) the subset formed by
the vertices of G which are adjacent to at least two ver-
tices of T . Clique-Helly graphs have been characterized
in terms of T ∗, as follows.

Proposition 1. (See [8,16].) A graph G is clique-Helly
if and only if every triangle T of G is such that T ∗ has
a universal vertex.

Hereditary clique-Helly graphs have been character-
ized by forbidden subgraphs, as below.

Proposition 2. (See [13,17].) A graph is hereditary
clique-Helly if and only if it does not contain any of the
graphs of Fig. 1, as induced subgraphs.

The recognition algorithms for these classes are
based on the above characterizations.

Fig. 1. Forbidden induced subgraphs of hereditary clique Helly
graphs.

2. The algorithms

In this section, we describe the new implementations
for recognizing clique-Helly and hereditary clique-
Helly graphs. The former class is considered first. The
method is based on the following proposition.

Proposition 3. A graph G is clique-Helly if and only if
U [ab] ∩ U [bc] ∩ U [ac] �= ∅, for any triple of vertices
a, b, c ∈ V (G) forming a triangle.

The proof follows directly from Proposition 1. The
recognition algorithm basically checks the above condi-
tions for every triangle of the graph.

Algorithm 1 (Clique-Helly graphs). Let G be the input
graph. In the initial step, compute the sets N(ab),N[ab]
and U [ab], for every edge ab ∈ E(G). In the general
step, perform the following operations, for each edge
ab ∈ E(G).

For each c ∈ N(ab), compute Sc := U [bc] ∩ U [ac]. If
every w ∈ Sc satisfies w /∈ U [ab] then report “G is not
clique-Helly” and stop.

Report “G is clique-Helly” and stop.

Clearly, for recognizing G as a clique-Helly graph,
the algorithm checks whether U [ab]∩U [bc]∩U [ac] �=
∅, for every triangle a, b, c of G. Consequently, the al-
gorithm is correct.

Next, we evaluate the complexity of the algorithm.
The sets N(ab),N[ab] and U [ab] can be computed in
overall O(m2) time, for all edges of G, with no diffi-
culty. The operations performed within the general step
of the algorithm depend on the size of the set Sc =
U [bc] ∩U [ac]. Clearly, |U [bc]| � |N [c]| = dc + 1, and
|U [ac]| � |N [c]| = dc + 1. Consequently, we need no
more than O(m) operations, in order to compute all sets
Sc, for each edge ab ∈ E(G). In addition, the sum of
the sizes of the sets Sc is also O(m), for each consid-
ered edge ab. To verify whether w /∈ U [ab] can be done
in constant time, by employing boolean vectors. Conse-
quently, we require O(m) steps for each edge ab. That
is, the general step of the algorithm also requires O(m2)

time, which is the overall complexity.
In the sequel, we consider hereditary clique-Helly

graphs. The proposed algorithm is based on the follow-
ing proposition.

Proposition 4. A graph G is hereditary clique-Helly if
and only if c ∈ U(ab), or b ∈ U(ac), or a ∈ U(bc), for
each triangle with vertices a, b, c ∈ V (G).
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Proof. Clearly, c ∈ U(ab) if and only if N(ab) ⊆ N(c).
Similar relations hold for b ∈ U(ac) and a ∈ U(bc).
Consequently, c ∈ U(ab), or b ∈ U(ac), or a ∈ U(bc)

holds if and only if N(ab) ⊆ N(c), or N(bc) ⊆ N(a),
or N(ac) ⊆ N(b).

Suppose G is hereditary clique-Helly. By Proposi-
tion 2, G does not contain any of the graphs of Fig. 1
as induced subgraphs. Consequently, for any triangle
with vertices a, b, c, there are no vertices x, y, z ∈ V (G)

which simultaneously satisfy x ∈ N(ab) \ N(c), y ∈
N(bc) \ N(a) and z ∈ N(ac) \ N(b). Consequently,
N(ab) ⊆ N(c), or N(bc) ⊆ N(a), or N(ac) ⊆ N(b),
meaning that the proposition is true. The proof of the
converse is similar. �

The algorithm for recognizing hereditary clique-
Helly graphs is a direct implementation of Proposi-
tion 4.

Algorithm 2 (Hereditary clique-Helly graphs). Let G

be the input (connected) graph. In the initial step, com-
pute U(ab), for each edge ab ∈ E(G). In the general
step, for each triangle a, b, c of G, perform the follow-
ing operations.

If c /∈ U(ab) and b /∈ U(ac) and a /∈ U(bc) then report
“G is not hereditary clique-Helly” and stop.

Report “G is hereditary clique-Helly” and stop.

As for the complexity, the initial step requires O(m2)

time. In the general step, to verify if c /∈ U(ab) can
be done in constant time, again employing boolean
vectors. Similarly, for the checks b /∈ U(ac) and a /∈
U(bc). Consequently, the total complexity of the gen-
eral step is that of the number of triangles of G, that is,
O(nm). Therefore the overall complexity of the algo-
rithm is O(m2).

3. Conclusions

We have described new implementations for per-
forming the required checks on the triangles of a
graph G, which leads to recognizing whether G is
clique-Helly or hereditary clique-Helly. The complexity
of the proposed methods is O(m2), for any of these two
classes. Currently known algorithms recognize clique-
Helly graphs in O(nm2) time, and hereditary clique-
Helly in O(n2m) time.

Besides improving the complexity of recognizing
these classes, the proposed algorithms also represent
improvements in the recognition of some other classes.

Disk-Helly graphs and hereditary disk-Helly graphs are
examples of such classes.

For disk-Helly graphs, the currently best recogni-
tion algorithm has complexity O(n2m) [1]. On the other
hand, in [2] it has been proved that a graph is disk-Helly
if and only if it is dismantlable and clique-Helly. Dis-
mantlable graphs can be recognized in O(nm) time [12,
14]. Consequently, by applying Algorithm 1, we can re-
duce to O(m2) the complexity of recognizing disk-Helly
graphs.

For hereditary disk-Helly graphs, the recognition is
based on the characterization [8] (cf. [6]), which states
that a graph G is hereditary disk-Helly if and only if
G is chordal and does not contain the graph G1 as an
induced subgraph. Since chordal graphs can be recog-
nized in linear time, the complexity is dominated by the
operations of verifying if G contains G1 as an induced
subgraphs, which would require O(n2m) time. How-
ever, since the graphs G2,G3 and G4 are not chordal,
we can apply Algorithm 2 after the chordality test, and
therefore reduce the total complexity to O(m2) time.

We leave the question whether clique-Helly graphs
or hereditary clique-Helly graphs can be recognized
in time proportional to the number of triangles of the
graph.
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