Supporting Information

REACTIVITY OF INORGANIC SULFIDE SPECIES TOWARD A HEME PROTEIN MODEL.

Silvina A. Bieza,[†] Fernando Boubeta,[†] Alessandro Feis,[§] Giulietta Smulevich,[§] Darío A. Estrin,[†] Leonardo Boechi,^{*,}[‡] and Sara E. Bari^{*,†}

Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires C1428EHA, Argentina

Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Buenos Aires

C1428EHA, Argentina

^sDipartimento di Chimica "Ugo Schiff", Universita' di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy

Figure S1 - QM optimization at PBE 6-31G** DFT level were performed on a ferric low-spin hexacoordinated core-porphyrinate, with both an imidazole ring and SH⁻ as 5th and 6th ligand. An N-methyl acetamide molecule was used to provide a counterpart for hydrogen bonding to the imidazole ligand. Also, a control calculation (full-optimization at the same level of theory) was performed in the absence of N-methyl acetamide. Mülliken charge populations were computed for the optimized structures.

Figure S2 – Absorption spectra of 2.6 x 10^{-6} M Fe^{III}NAcMP11 in the absence (dashed line) and in the presence (continuous line) of 4.5 mM cysteine. The optical path was 1 mm.

Figure S3A - Reactivity of the NacMP11Fe^{III}-S(sulfide) toward 1-methylimidazole. <u>A</u>: 1) $[Fe^{III}NAcMP11] = 5x10^{-6}M$, pH 6.8 (PO₄³⁻, 0.1M, 2.5mL, black line), 2) 10 µL 1-methylimidazole (red line), 3) 100µL H₂S (g) (blue line). The reaction of Fe^{III}NAcMP11 with 1-methylimidazole led to the formation of a [NAcMP11Fe^{III} (Imid)(His)] complex, with $\lambda_{max} = 406$ nm, at pH 6.8. This complex was indifferent to the addition of H₂S (g). <u>B</u>: 1) [Fe^{III}NAcMP11]= 5x10⁻⁶M, pH 6.8 (PO₄³⁻, 0.1M, 2.5mL, black line), 2) 100µL H₂S (g) (red line), 3) 10 µL 1-methylimidazole (blue line). The samples were deaerated under stream of argon, in quartz cuvettes (1 cm) with silicon septa prior to the addition of the reagent. The addition of 1-methylimidazole after the addition of H₂S shows the conversion of the 414 nm complex to the [NAcMP11Fe^{III} (1-MeIm)(His)], without modification of the Fe^{III} redox state in the process. Reagents are numbered according the order of addition to the solution in each experiment.

Figure S3B - Reactivity of the NAcMP11Fe^{III}-S(sulfide) toward the addition of dithionite. <u>A</u>: 1) [Fe^{III}NAcMP11]= 7x10⁻⁶M, pH 6.8 (PO₄³⁻, 0.1M, 2.5mL) (black line), 2) [S₂O₄²⁻]_{final conc}= 0.15mM (red line), 3) 200µL H₂S (g) (blue line). The Fe^{II}NacMP11 is indifferent to the addition of H₂S (g). <u>B</u>: 1) [Fe^{III}NAcMP11]= 7x10⁻⁶M, pH 6.8 (PO₄³⁻, 0.1M, 2.5mL) (black line), 2) 200µL H₂S (g) (red line), 3) [S₂O₄²⁻]_{final conc}= 0.15M (blue line). The samples were deaerated under stream of argon, in quartz cuvettes (1 cm) with silicon septa prior to the addition of the reagent. The NacMP11Fe^{III}-S(sulfide) reacts with sodium dithionite and yields the Fe^{II}NacMP11 form. Reagents are numbered according the order of addition to the solution in each experiment.

1) [Fe^{III}NAcMP11] = $7x10^{-6}$ M, pH 6.8 (PO₄³⁻ buffer, 0.1M, 2.5 mL), 2) [S₂O₄²⁻]_{final conc} = 0.15M, 3) 200 \mu L H₂S(g)

1) [Fe^{III}NAcMP11]= $7x10^{-6}$ M, pH 6.8 (PO₄³⁻ buffer, 0.1M, 2.5 mL), 2) 200µL H₂S(g), 3) [S₂O₄²⁻]_{final conc}= 0.15M

Figure S4 - (middle trace) RR spectra of 2.6×10^{-5} M NAcMP11 with 4.5 mM cysteine, in comparison with the RR spectra of unbound and sulfide-bound ferric NAcMP11. The intensities are normalized to the intensity of the v₄ band at 1372-1373 cm⁻¹. The low-frequency region of the cysteine complex is expanded to allow for a better visualization. Experimental conditions: 413.1 nm excitation wavelength, 3 mW power, 1.2 cm^{-1} spectral resolution; low-frequency range: 30 min integration time; high-frequency range: 30 min (NAcMP11), 10 min (+ cysteine), 6 min (+H₂S) integration time.

Figure S5. UV-Vis spectra of the Fe^{III}NAcMP11 toward Na₂S(anhydrous) solution. A) [Fe^{III}NAcMP11] = $[Na_2S(anhydrous)] = 1.2x10^{-5}M$; B) [Fe^{III}NAcMP11] = $8x10^{-6}M$, $[Na_2S(anhydrous)] = 8x10^{-4}M$. Both reactions at pH 6.8; buffer PO₄⁻³⁻, 0.1M, 25°C.

S6. Dissociation kinetic constant

By assuming the following reaction scheme

$$P_{414} \xleftarrow{k_{off}} NacMP11Fe^{III} + (sulfide)$$

$$NacMP11Fe^{III} + 1-MeIm \xrightarrow{k_2} NacMP11Fe^{III}(1-MeIm)$$

Expressing the reaction rate as

$$v = v_2 = k_2 \cdot [NacMP11Fe^{III}] \cdot [1 - MeIm] = \frac{\partial [NacMP11Fe^{III}(1 - MeIm)]}{\partial t}$$

and assuming steady-state for [$NacMP11Fe^{III}$] the following relationship is obtained:

$$k_{\text{off}} \cdot [P_{414}] = k_{\text{on}} \cdot [NacMP11Fe^{III}] \cdot [sulfide] + k_2 \cdot [NacMP11Fe^{III}] \cdot [1 - Melm]$$

Thus, the reaction rate can be expressed as a function of the reactants

$$v = \frac{\partial [NacMP11Fe^{III} (1 - MeIm)]}{\partial t} = \frac{k_2 \cdot k_{off} \cdot [P_{414}] \cdot [1 - MeIm]}{k_{on} \cdot [sulfide] + k_2 \cdot [1 - MeIm]}$$

The previous expression can be simplified as follows:

$$v = \frac{\partial [NacMP11Fe^{III} (1 - Me \operatorname{Im})]}{\partial t} = k_{obs} \cdot [P_{414}]$$

with $k_{obs} = \frac{k_2 \cdot k_{off} \cdot [1 - Me \operatorname{Im}]}{k_{on} \cdot [sulfide] + k_2 \cdot [1 - Me \operatorname{Im}]}$

At high concentration of [1-MeIm], k_{obs} becomes independent of [1-MeIm], and the following equivalence is derived:

$$k_{obs} = k_{off}$$

7
