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The Jarzynski equality is one of the most widely celebrated and
scrutinized nonequilibrium work theorems, relating free energy
to the external work performed in nonequilibrium transitions. In
practice, the required ensemble average of the Boltzmann
weights of infinite nonequilibrium transitions is estimated as a
finite sample average, resulting in the so-called Jarzynski estima-

tor, ΔF̂J . Alternatively, the second-order approximation of the
Jarzynski equality, though seldom invoked, is exact for Gaussian
distributions and gives rise to the Fluctuation-Dissipation esti-

mator ΔF̂FD . Here we derive the parametric maximum-likelihood

estimator (MLE) of the free energy ΔF̂ML considering unidirec-
tional work distributions belonging to Gaussian or Gamma fami-

lies, and compare this estimator to ΔF̂J . We further consider
bidirectional work distributions belonging to the same families,

and compare the corresponding bidirectional ΔF̂ML∗ to the Ben-

nett acceptance ratio (ΔF̂BAR) estimator. We show that, for

Gaussian unidirectional work distributions, ΔF̂FD is in fact the
parametric MLE of the free energy, and as such, the most effi-

cient estimator for this statistical family. We observe that ΔF̂ML

and ΔF̂ML∗ perform better than ΔF̂J and ΔF̂BAR, for unidirec-
tional and bidirectional distributions, respectively. These results
illustrate that the characterization of the underlying work distri-
bution permits an optimal use of the Jarzynski equality. © 2018
Wiley Periodicals, Inc.

DOI:10.1002/jcc.25754

Introduction

The nonequilibrium work theorem popularly known as the “Jar-
zynski equality” was first communicated to the scientific com-
munity in 1997 and represents a significant turning point for
both experimental and computational biophysics.[1]

The Jarzynski equality (eq. 1) relates the equilibrium free
energy change ΔF of a given process to the ensemble average
of the Boltzmann weights of the external work W performed in
infinite repetitions of the process of interest carried out far from
equilibrium:

ΔF¼ − ln e−W
� �

, ð1Þ

where both W and F are in units of kBT, with kB being the Boltz-
mann constant and T being the temperature. In the limit of
instantaneous processes, eq. 1 reduces to the Zwanzig relation-
ship.[2] The Jarzynski equality is particularly attractive because
of its generality; that is, the equality holds regardless of the rate
at which the nonequilibrium processes are carried out, and the
nature of the process itself. Interest in the Jarzynski equality
spread rapidly among the scientific community, not only
among theoretical physicists but also among experimental bio-
physicists, who were eager to test and exploit its full potential,
in particular in single-molecule pulling experiments.[3–11]

In practice, the ensemble average indicated by the brackets
h�i in eq. 1 is estimated using the average of a finite sample of
W1, …, WN values, resulting in the so-called Jarzynski free energy

estimator ΔF̂J , where the hat notation indicates an estimator:

ΔF̂J ¼ − ln
1
N

XN
i¼1

e−Wi

" #
: ð2Þ

In many cases, the nonequilibrium work distributions are
reported to be Gaussian, or mixtures of Gaussians.[12,13] More
specifically, nonequilibirum work distributions generated from
steered Molecular Dynamics (sMD) simulations in which a suffi-
ciently high force constant is used, and the pulling velocity is
slow enough, compared to the dynamic relaxation of the sys-
tem, such that the perturbation is considered to be in the
“near-equilibrium” or “low-dissipation” regime, the resulting
work distribution is expected to be Gaussian.[12,14,15] For a
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Gaussian distribution with mean μ and variance σ2, the right-
hand side of the Jarzynski equality (eq. 1) is equal to its second-

order Taylor expansion (ΔF¼ μ− σ2

2 ), an expression that has

been independently derived from the Fluctuation-Dissipation

(FD) theorem and gives rise to the estimator ΔF̂FD[16–18]:

ΔF̂FD ¼WN−
σ̂2W
2
, ð3Þ

where WN and σ̂2W are the work sample average and variance,
respectively:

WN ¼ 1
N

XN
i¼1

Wi and σ̂2W ¼ 1
N

XN
i¼1

Wi−W
� �2

: ð4Þ

The exponential nature of the Boltzmann weights makes the

average in ΔF̂J notoriously difficult to converge because it is
dominated by typically poorly sampled negative work values, a
problem that is exacerbated by large dispersion in the work
values.[19–23] Accordingly, many have developed methodologies
that limit the dispersion of the nonequilibrium work values in
the first place.[8,24–29] Others have proposed corrections or
block-averaging, combinatorial averaging, and extrapolation
analysis protocols that have proved useful in improving the
exponential average in the finite sampling limit.[30–34]

When possible, independent pulling experiments performed
in both forward and reverse directions is not only a convenient
way to check the convergence of a free energy estimate, but
also a source of additional information that can be leveraged to
improve the free energy estimate. Specifically, we refer to the
forward work distribution as that resulting from multiple inde-
pendent pulling experiments starting from equilibrium struc-
tures of state A with the reaction coordinate restrained to its
initial value, and ending with the value of the reaction coordi-
nate corresponding to state B. The reverse work ensemble is
defined as just the opposite; beginning with equilibrium struc-
tures of state B with the reaction coordinate restrained to an
initial value, and ending with the value of the reaction coordi-
nate corresponding to state A. We use the term bidirectional
pulling experiment to refer to this pair of forward and reverse
pulling experiments. The distributions of the forward and
reverse work ensembles are directly related to the free energy,
according to the Crooks Fluctuation Theorem (CFT)[35]:

fF wð Þ¼ fR −wð Þexp w−ΔFð Þ, ð5Þ

where fF(�) and fR(�) are the probability density functions (pdfs)
of W in the forward and reverse directions, respectively, and ΔF
is the free energy change in the forward direction. As the CFT
relates the forward work distribution to that of the sign-
changed works from the reverse process, we will let
f−R(w) = fR(−w) to simplify the notation. According to the CFT,
the pdfs fF and f−R intersect at w = ΔF. Using logistic regression

and the CFT, the Bennett Acceptance Ratio (ΔF̂BAR) has been
shown to be a nonparametric maximum-likelihood estimator
(MLE) of the free energy difference, leveraging forward and

reverse work ensembles.[36,37] As the directionality is arbitrarily
assigned and is only relevant when both directions are consid-
ered, from here on out, when referring to a unidirectional work
distribution we will simply omit the subscript F or R.

Often it is of interest not only to calculate a two-state free
energy difference, but a free energy profile, or change along a
reaction coordinate, in which case the Jarzynski equality can be
applied along the reaction coordinate. Specifically for the
reconstruction of free energy profiles, although, Hummer and
Szabo have proposed an efficient free energy estimator akin to
the weighted histogram approach.[38] In the limit of two states,

the Hummer and Szabo estimator reduces to the ΔF̂BAR estima-
tor. Minh and colleagues have further generalized the Hummer
and Szabo estimator to include bidirectional pulling
experiments,[39,40] and recently Nicolini et al. have proposed a
similar estimator for free energy profiles using bidirectional
work trajectories that was shown to be advantageous particu-
larly when the dispersion in the work distribution is large.[41]

These estimators have been compared computationally using
either toy examples with analytical solutions or simple test
systems.[42–44] A general conclusion that can be drawn from

these studies, however, is that the advantage of ΔF̂BAR or Hum-
mer and Szabo estimators in practice depends on the specific
system and transformation.

In this work, we will focus on the estimation of two-state free
energy differences, although the results should be generalizable
to the reconstruction of free energy profiles. Rather than con-
sidering toy problems, we consider representative pdfs of none-
quilibrium work values from Gaussian and Gamma families. For
each family we derive the parametric MLE of the free energy

using either unidirectional (ΔF̂ML) or bidirectional (ΔF̂ML∗) work

distributions, and numerically compare these estimators to ΔF̂J
and ΔF̂BAR for unidirectional and bidirectional work distribu-
tions, respectively.

Briefly, we will describe the motivation for choosing these
two statistical families. First, the Gaussian distribution has been
analytically derived as the expected distribution for near-
equilibrium pulling conditions; namely, when the dynamics of
the reaction coordinate can be approximated by a particle dif-
fusing along a moving harmonic potential.[15,45] Park et al. have
illustrated that, in the specific context of SMD simulations, a suf-
ficiently stiff spring along with sufficiently fast relaxations of the
system result in such Gaussian distributions.[12] Indeed, many
pulling experiments, both computational and experimental,
reportedly result in Gaussian work distributions.[46–50] Neverthe-
less, there are also many real-world examples of non-Gaussian
work distributions.[51,52] In particular, Kofke and coworkers have
made substantial advances in characterizing perturbation
energy (or instantaneous-switching work) distributions from
Free Energy Perturbation (FEP) calculations, and have
highlighted the marked asymmetry between insertion/deser-
tion FEP calculations, making these pdfs strictly non-
Gaussian.[53–56] In fact, the typical histograms of perturbation
energies from these calculations are well-described by Gamma
distributions.[53,54] Moreover, for several analytically solvable
test cases, such as certain cases of the multiharmonic model,[56]

FULL PAPER WWW.C-CHEM.ORG

Journal of Computational Chemistry 2018 WWW.CHEMISTRYVIEWS.COM2

http://WWW.C-CHEM.ORG
http://WWW.CHEMISTRYVIEWS.COM


nested harmonic potentials,[42] and the adiabatic compression/
expansion of a dilute gas,[57] the derived work distributions
belong to the Gamma family.

Our intention is to clarify that the Jarzynski equality needs

not be exclusively linked to the ΔF̂J estimator, which, though
frequently invoked, can perform quite poorly for certain work
distributions. We conclude that the MLE for a particular para-
metric family of the underlying work distribution always leads
to an optimal use of the Jarzynski equality. Although we show

that ΔF̂BAR is a powerful nonparametric estimator, we note that,
when possible, correctly identifying the statistical family and

using the corresponding ΔF̂ML∗ is more advantageous.

Methodology
Maximum-likelihood approach

Briefly, we will summarize the method of deriving MLEs as used
here, more details can be found elsewhere.[58]

Unidirectional case. Based on a sample W1, …, WN from a uni-
directional work distribution characterized by the pdf f(�, θ1, θ2),
where θ1 and θ2 are the parameters indexing the statistical fam-

ily (e.g., μ and σ2 for the Gaussian case). The MLEs (θ̂1 and θ̂2) of
these parameters maximize the likelihood function, which is

L θ1,θ2ð Þ¼
YN
i¼1

f Wi ;θ1,θ2ð Þ: ð6Þ

The maximizers of L(θ1, θ2) are critical points, and are also
critical points of its natural logarithm (the log-likelihood func-
tion), which turns out to be easier to work with. We take the
partial derivative of ln(L(θ1, θ2)) with respect to θ1 and θ2, such

that the maximizers of the log-likelihood θ̂1 and θ̂2 satisfy:

0¼
XN
i¼1

∂

∂θ1
ln f Wi ; θ̂1, θ̂2

� �
; and 0¼

XN
i¼1

∂

∂θ2
ln f Wi ; θ̂1, θ̂2

� �
ð7Þ

It is a simple exercise to show that the maximizers of the log-

likelihood function in the unidirectional Gaussian case are WN

for μ and σ̂2W for σ2 (eq. 4).

Bidirectional case. To leverage the data from both work distri-
butions in the estimation of the necessary parameters, we first
recognize that we can describe the reverse distribution in terms
of the parameters of the forward distribution, θ1 and θ2, and
express the joint-likelihood function:

L θ1,θ2ð Þ¼
YnF
i¼1

fF Wi ,θ1,θ2ð Þ
YnR
j¼1

fR −Zj ,θ1,θ2
� �

, ð8Þ

where −Z1,…, −ZnR are the work values with signs changed
from the reverse distribution. The same steps as described in
unidirectional case can be taken to find the maximizers of this
joint-likelihood function (eq. 12).

Numerical simulations

For a given statistical family, fixing the corresponding parame-
ters, and a sample size N, the following steps were car-
ried out:

1. A sample of works W1,…,WnF was generated from
fF(w), and, for bidirectional cases, a corresponding
sample Z1,…,ZnR from fR(w) was generated. In unidi-
rectional cases, nF = N, whereas in bidirectional cases
nF = nR = N/2.

2. The free energy ΔF was estimated based on the gen-
erated sample, according to ΔF̂J , ΔF̂ML, and, for bidi-
rectional cases, ΔF̂BAR and ΔF̂ML∗.

3. For each of the estimators the mean squared error
(MSE) was computed from 10,000 repetitions of steps
1 and 2, giving rise to 10,000 estimated free energy

values ΔF̂
1ð Þ
� …ΔF̂

10,000ð Þ
� , each based on a different

sample of work distribution of size N:

MSE ΔF̂�
� �¼ 1

10,000

Xj¼10,000

j¼1

ΔF̂
jð Þ

� −ΔF
� �2

, ð9Þ

where � corresponds to ML, J, ML*, or BAR.
For each of the estimators we also constructed a density esti-

mator based on the same 10,000 estimated free energy values

ΔF̂
1ð Þ
Θ ,…,ΔF̂

10,000ð Þ
Θ , using a Gaussian kernel and Silverman’s

rule[59] to determine the bandwidth.

For ΔF̂BAR and ΔF̂ML∗ the reverse distributions f−R(w) were
derived in terms of the parameters of the forward distribution
fF(w), according to the CFT (eq. 5), as described in the Results
section (details provided in Supporting Information). We consid-
ered sample sizes N of 50, 100, 500, 1000, 5000, 10,000, and
500,000. All simulations were run using python, the scipy.stats
module was used to describe and calculate parameters for both
statistical families,[60] and the pymbar script was used to calcu-

late the ΔF̂BAR estimates.[61]

Results

It will be worthwhile to begin by recalling that the ensemble
average is an expected value and can be calculated as:

e−W
� �¼ ð

e−wf wð Þdw, ð10Þ

where f(w) is, again, the pdf of the work distribution.
If a parametric family is postulated for f(w), the ensemble

average can be characterized in terms of the parameters index-
ing the family, which can in turn be estimated invoking the
maximum-likelihood principle (see Methods).

In the case of the Gaussian distribution the ensemble aver-
age can be expressed exactly as a function of the work distri-
bution’s mean μ and variance σ2. By substituting the pdf
(column 2 of Table 1) into eq. 10, we arrive at the following
identity:
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e−W
� �¼ exp −μ+

σ2

2

� 	
: ð11Þ

Substituting eq. 11 into the Jarzynski equality (eq. 1), we
obtain an exact expression for ΔF in terms of the parameters μ

and σ (Table 1). The MLEs of μ and σ2, μ̂ and σ̂2, respectively,

are precisely WN and σ̂2W , defined in eq. 3. By replacing these
MLEs in the expression for ΔF in Table 1, we obtain the para-
metric MLE of ΔF, which coincides with the familiar estimator

ΔF̂FD (eq. 3) resulting from the FD nonequilibrium work theo-

rem.[18] In the limit of large N, the two estimators ΔF̂FD and ΔF̂J
of course converge to the true value of ΔF. The ΔF̂J estimator
requires no knowledge of the underlying work distribution;

however, if such information is available, the MLE (ΔF̂FD for a
Gaussian distribution) should be used as it is the most efficient
possible estimator.[58,62,63]* In the sections that follow, we first

compare ΔF̂ML and ΔF̂J for unidirectional Gaussian and Gamma

families; we then derive the bidirectional MLEs ΔF̂ML∗ for both

families, and compare ΔF̂ML∗ to ΔF̂BAR.

Numerical simulations

Here, we consider numerically generated work samples from
Gaussian and Gamma distributions of varying spread.

As mentioned earlier, the right-hand side of the Jarzynski
equality (eq. 1) can be solved exactly in terms of the parame-
ters indexing each statistical family, by substituting the pdf
(second column of Table 1) into eq. 10. Replacing each of these
parameters with its MLE, calculated from either unidirectional
or bidirectional work distributions, yields the corresponding
parametric MLE of ΔF. The parameters and exact expressions
for ΔF are summarized in Table 1, columns 1 and 3, respectively,
for Gaussian and Gamma distributions.

Unidirectional work distributions. For each family, we consid-
ered work distributions of varying spread by fixing the corre-
sponding parameters, and for each scenario generated 10,000
random samples of increasing size N, ranging from N = 50 to
N = 500,000, which correspond to independent unidirectional
nonequilibrium work values. For each of these samples, we esti-

mated the free energy using ΔF̂J and the corresponding MLE,

ΔF̂ML, which, for a Gaussian distribution is ΔF̂FD. From these
10,000 samples, we calculated the MSE (eq. 9 in Methods) and
assessed its behavior with increasing sample sizes.

We considered various Gaussian distributions that corre-
spond to a wide range of associated ΔF values (−70, 0, or

70 kBT) (Supporting Information Fig. S1).† The convergence of
the free energy estimate, however, depends exclusively on the
standard deviation σ of the work distribution, and not on its
mean μ (Fig. 1). Even sample sizes as large as N = 500,000 are

not large enough to converge the estimate obtained with ΔF̂J ,
for work distributions with σ above 4 kBT, a magnitude that is
easily observed in driven nonequilibrium processes, particularly
those involving biomolecular systems with many degrees of
freedom.[48,64,65]

As anticipated, the MLE for Gaussian work distributions ΔF̂FD
performs well, regardless of the spread of the distribution, and
even for sample sizes as small as N = 50.

To further understand how the performance of the estimators
are affected by the nature of the underlying work distribution, we
also considered distributions from the Gamma family (Supporting
Information Fig. S2), which has been identified to be relevant in
certain driven nonequilibrium processes.[42,52,57] Depending on the
shape and rate parameters (α and λ, respectively), a Gamma distri-
bution can resemble a Gaussian distribution, however the Gamma
distribution is asymmetric and restricted to strictly positive values

of W. In this case, the convergence of ΔF̂J depends on both α

and λ of the distribution and performance worsens particularly
as the rate parameter λ decreases, and as the shape parameter
α increases (toward the left and toward the bottom of Fig. 2).
We note that even without negative work values, in this regime,
in which the work distributions are extremely disperse, we

again see the poor performance of ΔF̂J .

Bidirectional work distributions. To consider bidirectional work
distributions, we first used the CFT (eq. 5) to describe f−R in
terms of the parameters of fF and then generated samples of size
nF and nR from both forward and reverse distributions, with
nF = nR = N/2. For a Gaussian family, a forward distribution fF(w)
with mean μ and variance σ2 will have a corresponding reverse
distribution f−R(w) that is also Gaussian with mean μR = μ − σ2

and variance σ2R ¼ σ2. In this way, the parameters μ and σ2 suffi-
ciently describe the set of forward and reverse distributions.
Similarly, a Gamma distribution fF(w) with shape and rate
parameters α and λ, respectively, has a corresponding f−R(w)
that is also Gamma with shape and rate parameters αR = α and
λR = λ + 1 (detailed derivation in Supporting Information).

In the case in which nF = nR the estimator for μ that maxi-
mizes the joint-likelihood expression for the Gaussian case (see
Methods) is:

μ̂ML∗ ¼
WnF + ZnR

2
+
σ̂2ML∗
2

, ð12Þ

where WnF and ZnR are the sample means of the forward and
reverse work distributions, as defined earlier in eq. 4. Upon sub-
stitution into the exact expression for ΔF from column 3 of

Table 1, we observe that σ̂2ML∗ cancels out and the bidirectional

MLE ΔF̂ML∗ for Gaussian distributions reduces nicely to

Table 1. Summary of statistical families and exact expressions for ΔF.

Distribution Probability density function ΔF

Normal N(μ, σ2) 1ffiffiffiffi
2π

p
σ
e− w−μð Þ2=2σ2 μ− σ2

2

Gamma Γ(α, λ) λα

Γ αð Þw
α−1e−λw w > 0[a] α ln λ+ 1

λ

� �
[a] Γ(�) is the Gamma function.

*For a Gaussian distribution, ΔF̂ML= ΔF̂FD. †1 kBT at 300 K is approximately 0.56 kcal/mol.
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ΔF̂ML∗ ¼ μ̂ML∗−
σ̂2ML∗
2

¼WnF + ZnR

2
: ð13Þ

The same procedure was applied to the Gamma family,
resulting in analogous bidirectional MLEs for α and λ, the latter
of which must be determined numerically. Replacing these esti-
mators in the exact formula for ΔF in column 3 of Table 1 for
Gamma distributions, we obtain the corresponding bidirectional
MLE of ΔF.

The ΔF̂BAR estimator, though requiring no knowledge of the
underlying distribution, performs almost as well as the parametric
bidirectional MLE for Gaussian distributions. For the more disperse
distributions, however, in which there is very little overlap between
f−R(w) and fF(w) (far right column of Fig. 3), there is a substantial

advantage in using ΔF̂ML∗, which we emphasize is simply the
average of the average work obtained in the forward and sign-
changed reverse distributions. For the Gamma distributions we

find that, for the most part, ΔF̂BAR and ΔF̂ML∗ perform compara-
bly. For distributions with low rate parameters (λ = 0.1(kBT)

−1),
there is a tremendous advantage in using the parametric MLE

ΔF̂ML∗, as the MSE can reach values as high as 700 (kBT)
2 for

small (nF = nR = 50) sample sizes (Fig. 4); as mentioned earlier,
this is a regime in which fF(w) is very disperse and there is poor
overlap between fF(w) and f−R(w) (Supporting Information Fig. S2).
As anticipated, both free energy estimators that utilize bidirectional

work distributions perform better than the unidirectional ΔF̂ML and
ΔF̂J estimators, as we highlight the substantial difference in
scale between either Figures 1 and 3 or Figures 2 and 4.

Figure 1. Comparison of mean squared error for ΔF̂J (red circles) and ΔF̂ML (blue triangles) for unidirectional Gaussian distributions. For each estimator the
mean squared error (units: (kBT)

2) from 10,000 repetitions is shown as a function of sample size N. The grid is organized such that σ increases from left to
right, μ increases from top to bottom. Note that subplots have different scales on the y-axes. Arrar M, Boubeta FM, Szretter ME, Sued M, Boechi L, Rodriguez
D J. Comput. Chem. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Comparison of mean squared error for ΔF̂J (red circles) and ΔF̂ML (blue triangles) for unidirectional Gamma distributions. For each estimator the
mean squared error (units: (kBT)

2) from 10,000 repetitions is shown as a function of sample size N. Note that subplots have different y-axes. The grid is
organized such that λ increases from left to right, α increase from top to bottom. Arrar M, Boubeta FM, Szretter ME, Sued M, Boechi L, Rodriguez D
J. Comput. Chem. [Color figure can be viewed at wileyonlinelibrary.com]
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Variance of free energy estimates

Up until now, we have used the MSE as a criterion to compare

free energy estimators that do (ΔF̂ML and ΔF̂ML∗) or do not (ΔF̂J
and ΔF̂BAR) require assigning a statistical family to the underly-
ing work distributions. As each MSE is calculated with
Nrep = 10,000 repeated ΔF estimates, we can go one step fur-
ther in this analysis and compare the empirical density that
describes these Nrep free energy estimates for each estimator
and sample size N. In what follows, we will focus on the unidi-
rectional and bidirectional estimators in the Gaussian case,
however the analogous analysis for the Gamma case is included
as Supporting Information. Because we have already observed
that the behavior of the estimators only depends on σ, and not
on μ, we will arbitrarily let ΔF = 0.

In Figure 5, we observe that the empirical density of ΔF̂ML is
always centered around the true value of ΔF, whereas the

empirical density of ΔF̂J clearly indicates a bias, specifically to
the right of the true ΔF value, as anticipated by the Jensen
inequality.[66,67] Although this bias decreases with increasing

sample size, the distribution of free energies obtained with ΔF̂J
is still biased. In fact, for the work distribution with σ = 12kBT,

the distribution of ΔF̂J still does not include the true value of
ΔF, even with a sample size of N = 500,000.

The bias associated with ΔF̂J cannot be predicted without first
assigning a statistical model. This is an important and unresolved
issue because, as can be seen in Figure 5, the bias can constitute
a substantial part of the error associated with the free energy esti-
mate. Nevertheless, we can use error propagation (see Supporting

Figure 3. Comparison of mean squared error for ΔF̂BAR (green squares) and ΔF̂ML* (blue triangles) for bidirectional Gaussian distributions. For each estimator
the mean squared error (units: (kBT)

2) from 10,000 repetitions is shown as a function of sample size N, with nR = nF = N/2. Parameters for the forward
distribution are shown in each subplot. Arrar M, Boubeta FM, Szretter ME, Sued M, Boechi L, Rodriguez D J. Comput. Chem. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 4. Comparison of mean squared error for ΔF̂BAR (green squares) and ΔF̂ML* (blue triangles) for bidirectional Gamma distributions. For each estimator
the mean squared error (units: (kBT)

2) from 10,000 repetitions is shown as a function of sample size N. Arrar M, Boubeta FM, Szretter ME, Sued M, Boechi L,
Rodriguez D J. Comput. Chem. [Color figure can be viewed at wileyonlinelibrary.com]
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Information) to approximate the variance associated with ΔF̂J ,
without assuming a statistical family:

var ΔF̂J
� �’ var e−W½ �

N e−Wh i2 : ð14Þ

And the asymptotic variance of ΔF̂ML for the unidirectional
Gaussian case is:

var ΔF̂ML
� �¼ σ2

N
+
σ4 N−1ð Þ

2N2
: ð15Þ

Now, assuming a Gaussian distribution, we can compare var

(ΔF̂J) (eq. 14) to var(ΔF̂ML) (eq. 15) by expressing he−Wi (eq. 11)
and var[e−W] in var(ΔF̂J) in terms of μ and σ, such that var(ΔF̂J)
reduces to:

var ΔF̂J
� �’ 1

N
eσ

2
−1

� �
¼ 1
N

σ2 +
σ4

2
+ R3 σ2

� �� 	
, ð16Þ

where we have rewritten the exponential term as a second-
order Taylor expansion, plus the higher order terms R3(σ

2). By

further regrouping terms in var(ΔF̂ML) (eq. 15), we can rewrite

the expression as var(ΔF̂ML)=1
N σ2 + σ4

2

� �
− σ4

2N2, making it easier to

observe that var ΔF̂ML
� �

< var ΔF̂J
� �

. Thus, even in the small-σ

regime of Gaussian distributions, in which the bias of ΔF̂J
appears to be small (Fig. 5), the free energy estimate of ΔF̂ML is
still preferable due to its smaller variance.

For the case of bidirectional Gaussian distributions (Supporting

Information Fig. S4), the empirical densities for both ΔF̂BAR and

ΔF̂ML∗ show that both estimators are always centered around
the true value of ΔF, however the variance of the empirical den-

sity of ΔF̂ML∗ is smaller than that of ΔF̂BAR. An approximation for

the variance of ΔF̂BAR has been derived in Ref 48 using propa-

gation of errors. The asymptotic variance of ΔF̂ML∗ is simply:

var ΔF̂ML∗
� �¼ σ2

N
, ð17Þ

and, based on a comparison of var(ΔF̂ML∗) (eq. 17) to var(ΔF̂ML)
(eq. 15), we note that for Gaussian distributions it is more
advantageous to consider N/2 work samples in forward and
reverse directions, rather than N works in a single direction.

Discussion

We have evaluated the widely celebrated and scrutinized Jar-
zynski equality, placing special emphasis on the choice of the
procedure used to estimate the ensemble average of Boltz-
mann weights. Although the conventionally invoked Jarzynski
estimator requires no characterization of the underlying work
distribution, this robustness comes with a loss in statistical
efficiency.

One of the most notable validations of the Jarzynski equality,
published in 2002 in Science, has since attracted a great deal of
interest, with over 900 citations to date.[46] In that seminal arti-
cle, the authors validated the Jarzynski equality with single-
molecule pulling experiments, and further assessed that the

ΔF̂J estimator was more accurate, in certain regimes, than the

ΔF̂FD estimator. This finding, supported by others,[68,69] sparked
a surge of applications that invoke the Jarzynski equality specif-

ically using the ΔF̂J estimator.[3–11,70] Here, we have demon-
strated, however, that if a work distribution is actually Gaussian,

as was the case in Ref [46], ΔF̂FD is guaranteed to be more

accurate than ΔF̂J .
We have shown that the penalty for excluding a known char-

acterization of the underlying work distribution can be tremen-
dous as even a sample size as large as N = 500,000 in some

cases is insufficient for ΔF̂J to converge. The crux of the matter
is that the bias associated with the Jarzynski estimator is
unknown, and although expressions for the bias have been
proposed,[15,71,72] these estimates require first an assumption of
a statistical family for the work distribution. Once a statistical

family is assumed, however, the corresponding ΔF̂ML is the pre-

ferred estimator, with lower variance than ΔF̂J , in the first
place.

The problematic convergence of ΔF̂J has been identified by
others[19,21,22,36,38,40,61,73,74]; indeed its functional form alone
makes it a biased estimator that, on average, will over-estimate
ΔF for any finite number of work values, according to Jensen’s
inequality.[66,67] One key pitfall in the efficiency of the Jarzynski
estimator, and in any estimator that requires the ensemble
average of Boltzmann weights (e.g., in Umbrella Sampling or
FEP), lies in the presence of improbable low work values in the
left tail of the underlying work distribution. This is, in part, why

ΔF̂J performs considerably well for work distributions from the
Gamma family, in which work values are strictly nonnegative.

Figure 5. Comparison of empirical densities for of free energy estimates from unidirectional Gaussian work distributions, with ΔF̂J in red series and ΔF̂ML in
blue series. For each estimator the empirical density was calculated from 10,000 repetitions and plotted for increasing sample sizes N, showing how the
density either approaches the true value of 0 kBT or becomes more concentrated around it, with larger sample sizes. Arrar M, Boubeta FM, Szretter ME,
Sued M, Boechi L, Rodriguez D J. Comput. Chem. [Color figure can be viewed at wileyonlinelibrary.com]
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We emphasize, however, that even without negative work

values, ΔF̂J can be grossly inaccurate when the dispersion in
the nonequilibrium work values is large. The bias inherent in

ΔF̂J has been addressed in greater detail elsewhere.[56]

Through an analysis of the phase-space overlap and entropy
difference between initial and final states, Kofke and
coworkers have proposed a useful heuristic, the so-called pi
criteria, as a fail-safe indicator of bias in free energies esti-

mated with the ΔF̂J estimator.[55,75] This heuristic does not
require explicit assumption of a particular pdf, rather it holds when
the phase space of the final state is a subset of the initial state. The
π criteria reliably takes on negative values when free energy esti-
mates are biased, and changes sign when bias becomes negligible.
For the Gaussian and Gamma unidirectional distributions consid-
ered here, we confirmed that the π criteria takes on negative values
when the MSE was larger than 1 (kBT)

2 (data not shown), making
this heuristic a good general complement to exponential averaging
estimators.

Once a statistical family is correctly assigned, its corresponding
expression for ΔF (column 3 of Table 1) as a function of the
parameters indexing the statistical family gives rise to a more effi-

cient estimator than ΔF̂J . In fact, these parameters could be esti-
mated by any approach, resulting in other estimators for the free
energy. In this article, we have specifically used MLEs as they are
the most efficient ones when the statistical family is known,[58]

but it is important to emphasize that leveraging the pdf of the
work values in the first place generally leads to a preferential use
of the Jarzynski equality, regardless of the efficiency of the esti-
mators of the statistical parameters themselves.

Even though several analytically solvable test cases result in
Gaussian or Gamma work distributions, and examples of these
work distributions can be found in real-world applications,
future work is needed to address the conditions under which
these distributions can be anticipated beforehand. Therefore,
an important concern in using parametric MLEs is how much
deviations from the assigned statistical family impact the esti-
mated ΔF values. Strictly speaking, this question cannot be
answered without knowing the true underlying distribution, but
to gauge the effect of incorrectly assuming a Gaussian distribu-
tion, we have evaluated the performance of the parametric
MLE corresponding to unidirectional Gaussian work distribu-
tions (i.e., the second-order cumulant expansion of the Jarzynski
equality) on non-Gaussian distributions, either Skew-Normal or
Gamma. From this analysis (Supporting Information Fig. S7), we
observe that for left-skewed work distributions (i.e., longer left

tail than right tail), both ΔF̂J and Gaussian ΔF̂ML overestimate
the true ΔF value, and this effect is more pronounced with
increased skewness. For right-skewed distributions, however,

the incorrectly assigned ΔF̂ML estimator consistently underesti-
mates the true ΔF value, to an extent that depends on the
magnitude of the skewness of the underlying distribution. We
note that Gamma distributions are included among right-
skewed distributions. Although this point merits further analy-
sis, a practical approach may leverage this observation along

with the fact that ΔF̂J consistently overestimates the true ΔF
value, and use the incorrectly assigned Gaussian ΔF̂ML and ΔF̂J

as lower and upper limits, respectively, for the true ΔF value,
for any arbitrary right-skewed work distribution.

When possible, independent pulling simulations can be per-
formed in both forward and reverse directions. Using logistic

regression, Shirts et al. have arrived at the ΔF̂BAR estimator[37]

as a nonparametric maximum-likelihood free energy estimator,
leveraging bidirectional work distributions. Here, we have consid-
ered Gaussian and Gamma statistical families, and, using the CFT
have confirmed that, in both cases, the forward and reverse distribu-
tions belong to the same family, such that the parameters of the dis-
tribution in one direction are sufficient to describe those of the
opposite direction. With this information, we derived MLEs for the

necessary parameters (e.g., μ̂ML∗ and σ̂2ML∗ for the Gaussian distribu-
tion). Interestingly, for the Gaussian case, and when the same num-
ber of work values are considered in either direction, we found that
the free energy estimator reduces to the average of the works
obtained from the forward and reverse (with signs changed for the
latter) directions, and this simple average performs even better

than theΔF̂BAR estimator for Gaussian distributions.

For the case of Gamma distributions the ΔF̂BAR estimator can
be particularly slow to converge, as evidenced by MSEs as high
as 700 (kBT)

2 for sample sizes of N = 100. This finding is consis-
tent with that of another comparison of free energy

estimators,[42] in which ΔF̂BAR was found to perform poorly in
an analytically solvable test case with nested harmonic poten-
tials; we point out that the resulting work distribution in that
case is Gamma as well, with α = 1.

Together these results highlight regimes of two statistical
families in which the parametric MLE of ΔF is particularly more

advantageous than ΔF̂J or ΔF̂BAR, for unidirectional or bidirec-
tional work distributions, respectively. Furthermore, a compari-
son of the MSE and the asymptotic variance of the MLEs in the
unidirectional and bidirectional cases, we can highlight that
considering N/2 forward and N/2 reverse works is preferable
over N unidirectional work families.

The appropriate designation of the statistical family of the work
distribution is of utmost importance when translating the results
of these numerical simulations to any practical analysis of pulling
experiments. With small sample sizes the statistical family may not
be clearly distinguishable based on the sample itself. Depending
on the way in which the nonequilibrium process is driven, how-
ever, the statistical family of the underlying work distribution may
be anticipated beforehand. This theoretical anticipation, regard-
less of evidence from the sampled work distribution itself warrants
the use of the corresponding parametric MLE. In this sense, com-
putational single-molecule applications can be more straightfor-
ward than analogous force spectroscopic experiments, as the
work distribution is generally expected to be Gaussian (or a mix-
ture of Gaussians[13]) as long as a sufficiently stiff spring is used
and the relaxations of the system with respect to the changing
reaction coordinate are sufficiently fast, which corresponds to
being in the low-dissipation regime.[12,45] When the statistical fam-
ily is incorrectly assigned, however, the resulting free energy esti-
mates can be less accurate than the biased free energy estimate

obtained with ΔF̂J , and thus extreme caution must be exercised

in choosing the appropriate ΔF̂ML.
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These results highlight the tremendous advantage of theoreti-
cally anticipating the nature of the underlying work distributions in
estimating free energies as defined by the Jarzynski equality.
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