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1  |   INTRODUCTION

The change in free energy governs all chemical processes. 
The calculation of free energy profiles, that is, the change in 
free energy along a transformation or reaction coordinate, has 
thus been critical in understanding many complex processes 
such as protein–protein recognition (Gohlke, Kiel, & Case, 
2003; Isralewitz, Baudry, Gullingsrud, Kosztin, & Schulten, 
2001), drug design (Isralewitz et al., 2001; Shirts, Mobley, & 
Brown, 2010), ligand binding kinetics (Boechi et al., 2008; 
Boubeta, Bari, Estrin, & Boechi, 2016; Hu, Xu, & Wang, 

2015; Selvam, Wereszczynski, & Tikhonova, 2012; Xiong, 
Crespo, Marti, Estrin, & Roitberg, 2006), large-scale confor-
mational reorganization in proteins (Bringas, Petruk, Estrin, 
Capece, & Martí, 2017; Isralewitz, Gao, & Schulten, 2001; 
Marsico et al., 2018), and in the elucidation of chemical re-
action mechanisms in enzyme active sites (Bieza et al., 2014; 
Crespo, Martí, Estrin, & Roitberg, 2005).

Here, we will specifically address the use of steered molec-
ular dynamics (sMD) simulations and the Jarzynski equality 
to calculate a free energy profile along a particular transfor-
mation coordinate λ. We note that for all intents and purposes 
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Abstract
The calculation of free energy profiles is central in understanding differential enzy-
matic activity, for instance, involving chemical reactions that require QM-MM tools, 
ligand migration, and conformational rearrangements that can be modeled using 
classical potentials. The use of steered molecular dynamics (sMD) together with the 
Jarzynski equality is a popular approach in calculating free energy profiles. Here, we 
first briefly review the application of the Jarzynski equality to sMD simulations, then 
revisit the so-called stiff-spring approximation and the consequent expectation of 
Gaussian work distributions and, finally, reiterate the practical utility of the second-
order cumulant expansion, as it coincides with the parametric maximum-likelihood 
estimator in this scenario. We illustrate this procedure using simulations of CO, both 
in aqueous solution and in a carbon nanotube as a model system for biologically 
relevant nanoheterogeneous environments. We conclude the use of the second-order 
cumulant expansion permits the use of faster pulling velocities in sMD simulations, 
without introducing bias due to large dispersion in the non-equilibrium work 
distribution.
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here the terms reaction and transformation coordinate will 
be used interchangeably. Though we will not provide an in-
depth review of the theory, we will need to introduce a few 
key equations in order to set the notation.

Namely, the free energy change between two states, in 
which λ = λ0 and λ = λ1, can be defined as:

where Z is the partition function for the system with 
the indexed value of the reaction coordinate, that is, 
Z�1

= ∫ �q exp [−�H(q,�=�1)], and the Hamiltonian is a 
function of the positions of all atoms of the system q and the 
reaction coordinate λ.

In 1997, Jarzynski showed that this free energy change 
between two states can be exactly related to the ensemble av-
erage of the Boltzmann-weighted work performed in many 
non-equilibrium transformations from the initial to final 
states (Jarzynski, 1997):

where β = 1/kBT, with kB and T being the Boltzmann con-
stant and temperature, respectively, and the work W repre-
sents the external work performed in changing the reaction 
coordinate λ from λ0 to λ1 in some time-dependent manner. 
The Jarzynski equality only requires that the initial configu-
rations be taken from the equilibrium ensemble with λ = λ0, 
and we note that the final states with λ = λ1 do not belong to 
an equilibrium ensemble.

In sMD simulations (e.g., as implemented in Amber or 
NAMD simulation suites), the reaction coordinate is not usu-
ally constrained to a particular value, rather it is restrained to 
a particular center (generally according to a harmonic poten-
tial of force constant k) that changes according to a constant 
velocity v during a simulation of the irreversible transforma-
tion from λ0 to λ1:

where we use the prime notation to indicate the evaluation of 
the reaction coordinate for a given microscopic state q of the 
system, as opposed to the time-dependent value of the reac-
tion coordinate center, which is λ(t) = λ0 + vt.

Even though this implementation introduces an addi-
tional biasing potential to the system, the underlying poten-
tial of mean force (PMF) G(λ) can still be recovered using 
Jarzynski's equality and re-weighting estimators analogous to 
the WHAM approach (Bartels & Karplus, 1997; Ferrenberg 

& Swendsen, 1989; Kumar, Rosenberg, Bouzida, Swendsen, 
& Kollman, 1992; Shirts & Chodera, 2008). Alternatively, if 
the force constant k is sufficiently large (the so-called “stiff-
spring approximation”), such that λ′ (q) ≈ λ(t), G(λ) of the 
system without the presence of a biasing potential can be ap-
proximated through the following relation (Park & Schulten, 
2004):

We note that in general, if k is large, the higher order terms 
in Equation 4 become small enough to disregard.

Conventionally, when invoking the Jarzynski equality, ΔF 
is estimated with the so-called Jarzynski estimator:

Nevertheless, this estimator can be grossly inaccurate 
as it is dominated by poorly sampled low-work values, par-
ticularly if the variance of the work distribution is greater 
than (kBT)2 (Arrar et al., 2018; Hummer, 2001, 2007; 
Jarzynski, 2006; Pohorille, Jarzynski, & Chipot, 2010; 
Yunger Halpern & Jarzynski, 2016). Many have charac-
terized this bias in terms of parameters of the underlying 
work distribution; Kofke and co-workers have proposed a 
heuristic to evaluate whether the free energy estimate is 
biased or not (Wu & Kofke, 2005, 2005); Zuckermann and 
colleagues have proposed extrapolation methods to cor-
rect for this bias (Bucher, Walker, & McCammon, 2014; 
Echeverria & Amzel, 2012; Ytreberg & Zuckerman, 2004; 
Zuckerman & Woolf, 2001, 2002). Additionally, methods 
have been proposed to specifically limit the variance of the 
work distribution itself (Chelli, 2012; Nicolini, Frezzato, 
& Chelli, 2011; Ozer, Valeev, Quirk, & Hernandez, 2010; 
Ramírez, Zeida, Jara, Roitberg, & Martí, 2014; Schmiedl & 
Seifert, 2007; Vaikuntanathan & Jarzynski, 2008; Zerbetto, 
Piserchia, & Frezzato, 2014).

Interestingly, several have shown that by satisfying the 
stiff-spring approximation, and with sufficiently fast relax-
ations of the system, the work distribution obtained from an 
sMD simulation is anticipated to be Gaussian (Gore, Ritort, 
& Bustamante, 2003; Jarzynski, 2011; Park & Schulten, 
2004). In this scenario, the second-order cumulant expansion 
of the right-hand side of Equation 2 is an exact relation:
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Furthermore, we have highlighted in previous work (Arrar 
et al., 2018) that by estimating the parameters μ and σ2 from 
a particular sample of N work values using the maximum-
likelihood estimators W̄ and 𝜎̂2

W
 :

we obtain the parametric maximum-likelihood estimator 
ΔF̂ML, which, unlike ΔF̂J, is an unbiased estimator that per-
forms well, even with large variance in the Gaussian work 
distribution. Nevertheless, there are many examples in prac-
tice in which the non-equilibrium work distributions are not 
Gaussian (Chipot & Pohorille, 2007), and the second-order 
cumulant expansion in general must be used with caution, 
to avoid possibly large truncation errors. Here, we evaluate 
the impact of different spring force constants and velocities 
on the accuracy of free energies estimated with ΔF̂ML, under 
the assumption of a Gaussian work distribution, and ΔF̂J. We 
consider systems for which the overall change in free energy 
is known (and equal to zero) and illustrate that the regime in 
which such an assumption is valid is limited to minimal val-
ues of k that satisfy the stiff-spring approximation, whereas 
artifacts are introduced for higher values of k, an effect that 
is particularly pronounced when combined with low pulling 
velocities.

2  |   METHODS

2.1  |  Test systems
The two systems considered here are (a) a single molecule 
of carbon monoxide (CO), (b) a single molecule of CO and a 
carbon nanotube of radius 7 Å. Both systems were solvated in 
a box of TIP3P water molecules (Jorgensen, Chandrasekhar, 
Madura, Impey, & Klein, 1983). The Carbon/Boron Nitride 
Nanostructure Builder Plugin in VMD (Humphrey, Dalke, & 
Schulten, 1996) was used to generate the carbon nanotube 
structure, to which no charges were assigned. CO parameters 
were taken from previous work. All topology files (AMBER 
(Case et al., 2010) format) are available as Supplementary 
Information.

2.2  |  Initial configurations
To generate the initial configurations of each system for 
sMD simulations, an initial structure was first thermal-
ized to 300 K and 1 atm, which were maintained using the 
Langevin thermostat was used with a damping coefficient 
γ = 1 ps−1; pressure was maintained using the Langevin 
piston Nose–Hoover method (Feller, Zhang, Pastor, & 
Brooks, 1995; Martyna, Tobias, & Klein, 1994). A cutoff 

of 11 Å was used for long-range electrostatic calculations, 
with a switching distance of 10 Å. The SHAKE algorithm 
(Ryckaert & Ciccotti, 1977) was used to constrain bonds to 
non-polar hydrogens, and a 2-fs timestep was used for all 
simulations. A total of 5 ns were simulated for each system, 
and snapshots of coordinates and velocities were saved at 
10-ps intervals, for a total of 500 initial configurations for 
each system. The Cartesian coordinates of the carbon atom 
of the CO molecule as well as three carbons of the carbon 
nanotube were constrained in these simulations. For both 
systems, periodic boundary conditions were employed in 
all three dimensions. For the nanotube-containing system, 
the CO molecule was initially 2 Å away from the central 
axis of the nanotube.

2.3  |  Steered molecular dynamics
For each system, a pulling vector was defined from the ini-
tial coordinates of the carbon atom of the CO molecule. For 
the case of CO in water, the vector was simply along the 
x-axis (1,0,0), and in the case of migration of CO through 
the carbon nanotube, the vector was the central axis of the 
carbon nanotube. The reaction coordinate was defined as the 
projection of the distance vector between the Cartesian co-
ordinates of the carbon atom from its initial coordinates onto 
the pulling vector. The carbon atoms that were constrained 
in the generation of the initial configurations were also con-
strained during the sMD simulations, to avoid reorientation 
of the nanotube during simulations. Two different pulling 
velocities v = 0.001 and v = 0.0001 Å/timestep were consid-
ered, as well as a range of force constants (k = 20, 200, 400, 
800 kcal/mol/Å2) for the simplest system of CO in water; 
only the largest three force constants were considered for the 
system containing the carbon nanotube. For each combina-
tion of k and v, 500 sMD simulations were carried out. All 
simulations were carried out using the NAMD simulation 
package (Phillips et al., 2005).

3  |   RESULTS AND DISCUSSION

A necessary component for running sMD simulations is the 
initial configurations of the system. The Jarzynski equality 
requires that the initial configurations be sampled from an 
equilibrium distribution with λ = λ0 (Jarzynski, 1997). These 
configurations can be obtained through a Monte Carlo simu-
lation, or by periodically saving snapshots from an MD simu-
lation of the system with the reaction coordinate restrained to 
the desired initial value; we used the latter approach here. We 
note that it is important to ensure that the snapshots be taken 
at sufficiently long time intervals so that they are uncorre-
lated; a 10-ps interval was used for both systems considered 
here.
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The two key parameters to set before performing con-
stant velocity sMD simulations are the force constant k and 
the pulling velocity v. In what follows we will highlight 
results from a simple test system in which we pull a mole-
cule of CO in a box of water molecules, and we later illus-
trate that the same trends can be observed for the other test 

system in which CO is pulled through the carbon nanotube. 
For both systems, we considered a range of values for k and 
different pulling velocities. For each set of conditions k and 
v, 500 sMD trajectories were generated. The same initial 
snapshots were used for all conditions.

F I G U R E   1   Time evolution of 
variance of the reaction coordinate λ′ in 
sMD simulations of CO in water. The values 
of k and pulling velocity are specified in 
subplot titles. The grid is organized such 
that the value of k decreases from top to 
bottom, and v decreases from left to right. 
N = 500 trajectories were simulated for each 
set of conditions



      |  5BOUBETA et al.

3.1  |  CO in water
As mentioned in the Section 1, the spring constant should be 
stiff enough such that λ′(q) closely follows λ(t). To simplify 
notation, we will refer to λ′(q) and λ(t) as λ′ and λ, respec-
tively. At any given time, the value of λ′ for the group of 
sMD trajectories will be more or less clustered around λ, de-
pending on the force constant k. In fact, the variance of λ′ at 
a given time t is inversely proportional to k:

In Figure 1, we verify this relation for values of k rang-
ing from 20 to 800 kcal/mol/Å2 and two different pulling 
velocities of 0.001 and 0.0001 Å/timestep. In each sub-
plot, the time evolution of Var(λ′) fluctuates around 1/βk 
(horizontal line in each subplot). This relation is key in 
determining the optimal value of k, which depends on the 
magnitude of an observable fluctuation in the reaction co-
ordinate, δ(λ′):

here, since λ′ represents the projection of a distance onto the 
pulling vector, a fluctuation of δ(λ′) = 0.1 Å, for instance, 
would be reasonable lower limit, resulting in an optimal value 
of approximately 60 kcal/mol/Å2 at 300 K. Values of k larger 
than k* unnecessarily increase the perturbation in the system 
and introduce large forces in oscillating directions. In Figure 2, 
we show the time evolution of the applied force for the same 
set of conditions. In practice, the work performed on the sys-
tem is obtained by numerically integrating the force over time, 
for instance, by invoking the trapezoid rule; however, the large 
oscillations in the force values introduce a numerical drift in 
the integration, introducing error in the calculated work val-
ues, and subsequently, in the estimation of ΔF. In Figure 3, 
we show the estimated free energy profiles obtained by using 
either ΔF̂

J
 (red series) or ΔF̂

ML
 (blue series), and highlight 

that at slower pulling velocities the artifact resulting from 
large force constants is exacerbated, with both estimators re-
sulting in large deviations from the true value of ΔF. We note 
that in this high-k regime, the first- and second-order terms 
in Equation 4 are small, meaning that the approximation of 
ΔF values for the underlying PMF is valid. Furthermore, even 
though the work distributions upon visual inspection appear to 
be Gaussian, the use of the second-order cumulant expansion 
results in large inaccuracy in the estimated free energy.

If we specifically consider the lowest value of k that satis-
fies the stiff-spring approximation (in this case, k = 200 kcal/
mol/Å2), we note that even at the fast pulling velocity of 

v = 0.001 Å/timestep, the use of ΔF̂
ML

 permits a more ac-
curate estimation of the free energy change than does ΔF̂

J
, 

which performs worse at faster pulling velocities due to in-
creased dispersion in the work distribution.

3.2  |  Migration of CO through 
carbon nanotube
We performed analogous analysis for a system in which CO 
is pulled through a carbon nanotube. In this way, we ap-
proximate the problem of ligand migration in proteins while 
maintaining a known true value of ΔF = 0 kcal/mol. Again, 
because the reaction coordinate is a distance, we can approxi-
mate an optimal value of k* ≈ 60 kcal/mol/Å2. We summa-
rize in Figure 4 the absolute error obtained in the free energy 
after crossing the nanotube under the different conditions 
evaluated. We note that the higher order terms in Equation 4 
are small in all cases here (dashed series), yet the absolute 
error in estimated ΔF increases with k, particularly for the 
lower pulling velocity.

3.3  |  Fast relaxations
Up until now, the trends for all the test systems would appear 
to suggest that the pulling velocity can do no harm, as long as 
the spring constant is close to the minimum value that satisfies 
the stiff-spring approximation, which is not true. In fact, the 
extrapolation of an sMD simulation to instantaneous switching 
results in a free energy perturbation calculation, for which the 
work distributions are generally Exponential or Gamma dis-
tributions, not Gaussian. Indeed, the expectation of Gaussian 
work distribution requires not only the stiff-spring approxima-
tion, but also sufficiently fast relaxations of the system.

A fairly straightforward metric to evaluate fast relaxations 
proposed by Park and Schulten (2004) is to calculate the 
time evolution of the diffusion coefficient of λ′ in the sMD 
simulations:

As long as v/βkD ≪ l, with l being a characteristic range 
of λ in which the change in D is large, we can consider that 
the fast relaxation criteria have been met. For the test systems 
evaluated here, the relaxations involve the reorganization of 
water molecules around the molecule of CO, and this crite-
rion was satisfied under all conditions considered.

4  |   CONCLUSION

Here, we have illustrated the practical effects of the choice 
of the spring force constant and pulling velocity in sMD 
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F I G U R E   2   Time evolution of applied 
force in sMD simulations of CO in water. 
The values of k and pulling velocity are 
specified in subplot titles. The grid is 
organized such that the value of k decreases 
from top to bottom, and v decreases from 
left to right. 500 trajectories were simulated 
for each set of conditions
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F I G U R E   3   Free energy profiles for 
CO in water using ΔF̂

ML
 (blue) and ΔF̂

J
 

(red) estimators. The values of k and pulling 
velocity are specified in subplot titles. 
The grid is organized such that the value 
of k decreases from top to bottom, and v 
decreases from left to right. 500 trajectories 
were simulated for each set of conditions. 
Error bars were calculated using error 
propagation as detailed elsewhere (Arrar 
et al., 2018); error bars for ΔF̂

J
 exceed the 

scale of the figures in the high-k and low-v 
regime (top right)
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simulations. In particular, we have highlighted the impor-
tance of setting the spring force constant to the lowest pos-
sible value that satisfies the stiff-spring approximation. 
Only in this regime, and with the criteria of fast relaxa-
tions met, we conclude that the use of the second-order 
cumulant expansion is indeed advantageous for accurate 
estimation of ΔF. These methodological criteria should 
be useful in the determination of free energy profiles for 
investigating enzymatic chemical reactions, as well as in 
studies of ligand migration or conformational changes in 
proteins.
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