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Overview

Intersection Graphs

Chordal Graphs

Interval graphs

Unit interval graphs

Comparability graphs and acyclic local tournaments



Basice definitions

I A graph G is a triple consisting of a vertex set V (G), an edge
set E(G), and a relation that associates with each edge two
vertices (not necessary distinct) called its endpoints.

I A loop is an edge whose endpoints are equal. Multiple edges
are edges having the same pair of endpoints.

I A simple graph is a graph having no loops or multiple edges.

I When two vertices u and v are endpoints of an edge, they are
adjacent and are neighbors.

I We denote by NG(v) the set of neighbors of v.

I A clique of a graph is a set of pairwise adjacent vertices.
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Definitions

I Let F = {S1, . . . , Sn} a family of sets. The intersection graph
of F is the graph having F as vertex set with Si adjacent to
Sj if and only if i 6= j and Si ∩ Sj 6= ∅.

I An edge clique cover of a graph G is any family
ε = {Q1, . . . , Qk} of cliques of G that cover all the edges of
G, i.e, if uv ∈ E(G) then u, v ∈ Qi for some i = 1, . . . , k.

I Given a graph G and F(ε) = {Sv : v ∈ V (G)}, where
Sv = {i : v ∈ Qi}. The intersection graph of F(ε) is
isomorphic to G and F(ε) is called the dual set representation
of G.

I Since every graph has an edge clique cover
ε = {{u, v} : uv ∈ E(G)}, all graphs are intersection graph
of some family of sets.
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Example

Sv1 = {1}, Sv2 = {1, 2}, Sv3 = {2}, Sv4 = {2, 3, 4, 5},
Sv5 = {3, 4}, Sv6 = {1, 4, 5}.



Dual edge clique cover

I Given a graph G with a set representation
F = {Sv1 , . . . , Svn}, the set ε(F) = {Qx : x ∈

⋃
i Svi} where

Qx = {i : x ∈ Svi} is an edge clique cover of G and ε(F) is
called a dual edge clique cover of G.

If Sv1 = {1}, Sv2 = {1, 2}, Sv3 = {2}, Sv4 = {2, 3}, Sv5 = {3, 4},
Sv6 = {1, 4, 5}, then Q1 = {v1, v2, v6}, Q2 = {v2, v3, v4},
Q3 = {v4, v5}, Q4 = {v5, v6} and Q5 = {v4, v6}.



Dual edge clique cover

I Given a graph G with a set representation
F = {Sv1 , . . . , Svn}, the set ε(F) = {Qx : x ∈

⋃
i Svi} where

Qx = {i : x ∈ Svi} is an edge clique cover of G and ε(F) is
called a dual edge clique cover of G.

If Sv1 = {1}, Sv2 = {1, 2}, Sv3 = {2}, Sv4 = {2, 3}, Sv5 = {3, 4},
Sv6 = {1, 4, 5}, then Q1 = {v1, v2, v6}, Q2 = {v2, v3, v4},
Q3 = {v4, v5}, Q4 = {v5, v6} and Q5 = {v4, v6}.



Intersection number

I The intersection number i(G) is the minimum cardinality of a
set S such that G is the intersection graph of a family of
subsets of S.

I The minimum cardinality of an edge clique cover of G is
denoted by θ(G).

Erdös, Goodman, & Possa (1966)

For every graph G, i(G) = θ(G).

Proof sketch: Let G be a graph ε a clique cover |ε| = θ(G), then
|
⋃

S∈F(ε) S| = θ(G) and so i(G) ≤ θ(G). Conversely, if G is a
graph with a set representation F = {S1, . . . , Sn} with
|
⋃

i Si| = i(G), then |ε(F)| = i(G) and so θ(G) ≤ i(G).�
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Example

Q1 = {v1, v2, v6}, Q2 = {v2, v3, v4}, Q3 = {v4, v5, v6} ,
ε = {Q1, Q2, Q3}, F(ε) = {{1}, {1, 2}, {2}, {2, 3}, {3}, {1, 3}},
and θ = i = 3.

Kou, Stock-Meyer,& Wong (1978)

It is NP-complete to determine θ(G) = i(G).
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Intersection graph of subtrees in a tree

I A chordal graph is an intersection graph of a family of
subtrees in a tree.



Graphs with no induced cycle of length at least 4

Remark
If G is a chordal graph, then G contains no induced cycle with at
least four edges.

Proof sketch: Let T = {Tv}v∈V (G) be a family of subtrees of a
tree G such that uv ∈ E(G) iff V (Tu) ∩ V (Tv) 6= ∅. Suppose
towards a contradiction that G contains a cycle of length k with
k ≥ 4. Therefore, there exists a collection of subtrees in T , {Ti}ki=1

such that Ti ∩ Tj 6= ∅ iff |i− j| = 1 modulo k. Consequently, it can
be proved that, T contains a cycle, a contradiction.�
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Simplicial vertex and clique separator

I A vertex v of G is a simplicial vertex if its neighborhood
NG(v) is a clique of G (a set of pairwise adjacent vertices).

I A subset S of V (G) is a vertex separator of two nonadjacent
vertices a and b (or an a, b-separator) if a and b are in
different connected components of G− S.

I A subset S of G is a minimal clique separator if no proper
subset of S is a minimal separator.

I Let σ = [v1, . . . , vn] be an ordering of the vertices of G. We
say that σ is a perfect vertex elimination scheme if vi is a
simplicial vertex of G[{vi, . . . , vn}] for each i = 1, . . . , n.
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Example
The graph on the left is a chordal graph, and the graph on the
right is not a chordal graph because {o, p, r, z} induces a 4-cycle.
Vertices a and e are simplicial vertices. The sets {c, f} and
{x, r, o} are minimal separators. The ordering σ = [e, d, c, f, b, a] is
a perfect vertex elimination scheme.



Structural characterization

Fulkerson and Gross (1965)

Let G be a graph. The following statements are equivalents:

1. G has no induced cycle of length at least four as induced
subgraph.

2. Every minimal vertex separator is a clique.

Proof sketch: Suppose that (x1, x2, x3, . . . , xn) is an induces
cycle of G with n ≥ 4. Therefore, if S is a x1, x3-separator, then
xe ∈ S and xi ∈ S for some 4 ≤ i ≤ n. Consequently, S is not a
clique. Arguing, towards a contradiction, suppose that S is a
minimal clique separator of G with x, y ∈ S two nonadjacent
vertices. If G1 and G2 are connected components of G− S, then
each vertex in S has at least one vertex in V (Gi) for i = 1, 2.
Consequently, there exist paths P1 and P2 of minimum length in
G1 and G2 respectively s.t. xP1yP2x is an induced cycle of length
at least four.�



Structural characterization

Fulkerson and Gross (1965)

Let G be a graph. The following statements are equivalents:

1. G has no induced cycle of length at least four as induced
subgraph.

2. Every minimal vertex separator is a clique.

Proof sketch: Suppose that (x1, x2, x3, . . . , xn) is an induces
cycle of G with n ≥ 4. Therefore, if S is a x1, x3-separator, then
xe ∈ S and xi ∈ S for some 4 ≤ i ≤ n. Consequently, S is not a
clique. Arguing, towards a contradiction, suppose that S is a
minimal clique separator of G with x, y ∈ S two nonadjacent
vertices. If G1 and G2 are connected components of G− S, then
each vertex in S has at least one vertex in V (Gi) for i = 1, 2.
Consequently, there exist paths P1 and P2 of minimum length in
G1 and G2 respectively s.t. xP1yP2x is an induced cycle of length
at least four.�



Minimum clique separator

Dirac (1961)

Every graph with no cycle of length at least four as induced
subgraph has a simplicial vertex. Moreover, if G is not a complete
graph, then G has at least two nonadjacent simplicial vertices.

Proof sketch: If G is a complete graph the result follows
immediately. Assume that G is not a complete graph, then G has a
minimal a, b-separator S which is a clique with Ga and Gb

connected components of G− S containing a and b respectively.
By induction, either Ha = G[V (Ga) ∪ S] has two nonadjacent
simplicial vertices and so one vertex of Ga is a simplicial vertex of
G, or Ha is a complete graph and so every vertex of Ga is
simplicial vertex of G. Analogously, Gb also has a simplicial vertex
which is also a simplicial vertex of G.�
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Example
The set S is a minimal clique separator, and v2 and v6 are two
nonadjacent simplicial vertices.



Prefect vertex elimination scheme

Fulkerson and Gross (1965)

Let G be a graph. The following statements are equivalents:

1. G has no induced cycle of length at least four as induced
subgraph.

2. Every minimal vertex separator is a clique.

3. G has a perfect vertex elimination scheme.

Proof sketch: 1. ⇔ 2. was already proved. If G has a no induced
cycle with at least four edges, then G, by virtue of Dirac’s
theorem, has at least one simplicial vertex v1. By induction, G− v
has a PVES σ′ = [v2, . . . , vn] and so σ = [v1, v2, . . . , vn] is a
PVES of G. Arguing, towards a contradiction, suppose that G has
a cycle C with at least four edges and a perfect a PVES. If v is
the vertex of C with the smallest index in σ, then its two neighbors
in C are adjacent, a contradiction.�
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Clique tree

Let G be a graph. The following statements are equivalents.

1. G has no induced cycle with at least four edges.

2. G is the intersection graph of a family of subtrees of a tree.

3. There exists a tree T = (K, E) whose vertex set K is the set
of maximal cliques of G such that each induced subgraph
T [Kv] is connected, where Kv consists of those maximal
cliques which contains v.

I The tree T is called the clique tree of G.

I Let G be a graph and v a simplicial vertex of G,
U = {w : NG(w) ⊆ NG[v]}.

I Y = NG(v) \ U .
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Example 1: Y is a maximal clique of G− U

Let v = 1, U = {1} and Y = {2, 3, 4}



Example 2: Y is not a maximal clique of G− U

Let v = 1, U = {1, 2} and Y = {3, 8}



Example 3



Weighted clique tree

I The clique graph K(G) is the intersection graph of the
maximal cliques of K(G).

I The weighted clique graph Kw(G) is the clique graph of G
with each edge KQ given weight |K ∩Q|.

Gavril (1987)

A connected graph G is a chordal graph if and only if some
maximum spanning tree of Kw(G) is a clique tree of G. Moreover,
every maximum spanning tree of Kw(G) is a clique tree of G, and
every clique tree of G is such a maximum spanning tree.
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Procedure LexBFS(x)

I Input: A graph G and a vertex x of G.

I Output: An ordering σ of the vertices of G.

1. label(x)← |V (G)|;
2. for each vertex y ∈ V (G) \ {x} do label(y)← Λ;

3. for i← |V (G)| downto 1 do

4. pick an unnumbered vertex y with lexicographically the largest
label;

5. σ(y)← |V (G)|+ 1− i (assign to y number |V (G) + 1− i);

6. for each unnumbered vertex z ∈ NG(y) do append i to
label(z).



Example
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Properties of lexBFS ordering

Dragan, Nicolai & Brandstädt (1997)

An ordering ≺ of the vertices of an arbitrary graph G is a lexBFS
ordering if and only if for all vertices a, b, c of G such that
ac ∈ E(C) and bc /∈ E(G), c ≺ b ≺ a implies the existence of a
vertex d such that d is adjacent to b but not to a and d ≺ c.

Rose, Tarjan & Lueker (1976)

Let σ be a lexBFS ordering of a chordal graph G an let v be an
arbitrary vertex of G. Let W be the set of vertices of G that occur
before v in σ. Then, v is a simplicial vertex in the induced
subgraph G[{v} ∪W ].
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arbitrary vertex of G. Let W be the set of vertices of G that occur
before v in σ. Then, v is a simplicial vertex in the induced
subgraph G[{v} ∪W ].



Proof sketch

Arguing towards a contradiction, suppose that v = v0 is not a
simplicial vertex of G[{v} ∪W ]. Assume w.o.l.o.g that v is the
vertex with the largest index in σ and so W = V (G) \ {v}. .



Proof sketch
Consequently, there exists two vertices v1 and v2 such that
v1, v2 ∈ NG(v) and v1v2 /∈ E(G). Choose v2 the smallest (respect
to the ordering σ). We know that there exists a vertex v3, such that
v3 is adjacent to v2 but not to v1, choose v3 as smaller as possible
(with respect to σ). Besides, since G is chordal, v2v3 /∈ E(G)

.



Proof sketch

. Consider the longest decreasing sequence (with respect to σ)
v0, v1, v2, . . . , vm such that, v0vi ∈ E(G) for i = 1, 2, vivj ∈ E(G)
iff |i− j| = 2, and vj is the smallest vertex (respect to σ) such
that vj is adjacent to vj−1 but not to vj−2.



Proof sketch

. We know that there exists a vertex vm+1 which is adjacent to
vm−1 but not to vm−2 (chosen as smaller as possible with respect
to σ).



Proof sketch

. Arguing towards a contradiction, suppose that vm+1 is adjacent
to vm−3. Therefore, there exists a vertex w greater than vm+1

(and so greater than vm) which is adjacent to vm−2 but not to
vm−3, contradicting that vm is minimum.



Proof sketch

. Therefore, vm+1 is not adjacent to vm−3.



Proof sketch

. Finally, since G is chordal, vm+1 is not adjacent to vi for each
i = 0, . . . ,m− 4,m, contradicting the maximality of m.�



Chordal graph linear-time recognition algorithm
I Input: An arbitrary graph G.
I Output: A statement declaring whether or not G is a chordal

graph.

1. Do an arbitrary lexBFS.
2. If the reverse of the lexBFS ordering σ is a perfect vertex

elimination ordering, then conclude that G is a chordal graph;
else, conclude that G is not a chordal graph.



Gaussian elimination

I Gaussian elimination on an n× n matrix M consists in
choosing a nonzero pivot mij , then using elementary row and
column operations to change mij into 1, and to change mrj

and mis into 0 for all r 6= i and s 6= j.

I An elimination scheme is a sequence of n pivots to reduce a
nonsingular matrix M entries to the indentity matrix.

I A perfect elimination scheme has the further property that
non zero entry is ever made nonzero along the way.

I Given a symmetric matrix M the graph of M , denoted by
G(M), has a vertex set {1, 2, . . . , n} such that i is adjacent
to j iff mij 6= 0.
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Example

Bad choice: 4 1 1
1 1 0
1 0 1

→
 1 0 0

0 3 −1
0 −1 3

→
 1 0 0

0 1 0
0 0 8


Good choice: 4 1 1

1 1 0
1 0 1

→
 4 1 0

1 1 0
0 0 1

→
 4 0 0

0 1 0
0 0 1





Rose (1970)

A symmetric matrix M with nonzero diagonal entries has a perfect
elimination scheme if and only if G(M) is chordal.

Proof sketch: Pivoting mii results in removing all the edges
incidents to the vertex i and simultaneously adding all edges rs
whenever mri 6= 0 and mis 6= 0.

...
...

· · · mii · · · mis · · ·
...

...
· · · mri · · · 0

...
...


Hence no zero entry is made zero in M precisely when every two
neighbors of i are adjacent in G(M); equivalently i is a simplicial
vertex of G(M).
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Definition

I An interval graph G is an intersection graph of a family F of
closed (or open) intervals in the real line.

I The family F is called an interval model of G



Application to scheduling
I Consider a collection C = {ci} of courses. Let Ti be the time

interval during which course ci is to take place. Which is the
minimum number of classrooms needed to be assigned so that
there is no two courses ci and cj in the same classroom such
that Ti ∩ Tj 6= ∅.

I The problem can be solved by proper coloring the interval
graph G, with V (G) = {ci}i and
E(G) = {cicj : Ti ∩ Tj 6= ∅}.
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Coloring an interval graph

I We denote by ω(G) and χ(G) to the size of a maximum
clique of a graph G and the minimum numbers of colors
needed to proper coloring a graph G.

Remark
If G is an interval graph, then χ(G) = ω(G).

Proof sketch: Order the vertices of G according to the left
endpoints of the interval representation. Let k = χ(G). Assume
that v receives the color k. Therefore, the left a endpoint of its
corresponding interval also belongs to other intervals that already
have colors from 1 to k − 1. Consequently, ω(G) ≥ k = χ(G) and
so ω(G) = χ(G).�
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Relationship with chordal graphs

Hajös (1958)

Every interval graph is a chordal graph.

Proof sketch: Let F = {Iv}v∈V (G) an interval model of G.
Arguing towards a contradiction, suppose that G has a cycle
(v1, v2, . . . , vk) with k ≥ 4. Choose, pi ∈ Ivi ∩ Ivi+1 for
i = 1, . . . , k − 1. Since Ivi−1 ∩ Ivi+1 = ∅, {pi}1≤i≤k either is a
strictly increasing or a strictly decreasing sequence. Therefore,
Iv1 ∩ Ivk = ∅ contradicting that v1vk ∈ E(G).�
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Comparability graphs

I A digraph D = (V,A) has a transitive orientation if for each
arc (a, b) ∈ A and (b, c) ∈ A then (a, c) ∈ E.

I A graph G = (V,E) is called a comparability graph if its
edges can be oriented so that the resulting digraph
D = (V,A) has a transitive orientation.

Ghouila-Houri (1962)

If G is an interval graph, then G is a comparability graph.
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Proof sketch

Let {Iv}v∈V (G) be an interval model of G. Define the orientation

A of the edges of G as follows: (u, v) ∈ D if and only if Iu is fully
to the left of Iv.



Characterization

Gilmore & Hoffman (1964)

Let G be a graph. The following statements are equivalent:

1. G is an interval graph.

2. G is a chordal graph and its complement G is a comparability
graph.

3. The maximal cliques of G can be linearly ordered such that,
for every vertex v, the cliques containing v occur
consecutively.



Proof sketch

2.⇒ 3. Let D = (V,A) be a transitive orientation of G. Given two
maximal cliques of G, C1 and C2, it can be proved that: i) there
exists one arc with one of its endpoints in C1 and the other one in
C2; and ii) All such arcs in D connecting C1 and C2 have the
same orientation



Proof sketch

Consider the following relation on the collection C of maximal
cliques of G: C1 < C2 if there exists an arc in A connecting a
vertex in C1 with a vertex in C2 oriented from C1 toward C2. It
can be proved that (C, <) is a transitive tournament.



Proof sketch

Arguing towards a contradiction, suppose that there exists a vertex
v, and Ci, Cj , Ck ∈ C such that Ci < Cj < Ck and v ∈ Ch for
h = i, k and v /∈ Cj . Therefore, there exists a vertex w ∈ Cj such
that vw ∈ E(G). In addition, v ∈ Ci implies (v, w) ∈ D and
x ∈ Ck implies (w, v) ∈ D, a contradiction.
3.⇒ 1.. For each vertex v ∈ V (G) we define Iv as the minimal
closed interval in R containing the set of integers {i : v ∈ Ci}. It is
easy to see that vw ∈ E(G) if and only if Iv ∩ Iw 6= ∅.�



Clique matrix & consecutive one property

I The clique matrix of a graph G is the maximal cliques versus
vertices incident matrix.

I A matrix whose entries are zeros and ones has the consecutive
1’s property for columns if its rows can be permuted in such a
way that the 1’s in each column occur consecutively.


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

 ·


1 0 0 1
1 1 1 0
0 1 0 0
1 0 1 1
1 1 0 0

 =


1 0 0 1
1 0 1 1
1 1 1 0
1 1 0 0
0 1 0 0


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Consecutive 1’s property for columns

Fulkerson & Gross (1965)

A graph G is an interval graph if and only if its clique matrix M
has the consecutive 1’s property for columns



Characterization of Interval Graphs

I Three vertices in a graph G form an asteroidal triple if every
two of them are connected by a path avoiding the third one.

Boland and Lekkerkerker (1962)

Let G be a graph, the following statements are equivalent:

1. The graph G is an interval graph.

2. The graph G is chordal and contains no asteroidal triple.

3. The graph G does not contain any of the following graphs as
induced subgraphs.

bipartite claw
1 2· · ·n

n-net, n ≥ 2 umbrella

1 2 3 · · ·n
n-tent, n ≥ 3

1 n

2 · · ·
Cn, n ≥ 4



Another characterization

Olariu (1991)

For a graph G the following two statements are equivalent:

1. G is an interval graph.

2. There exists a linear order < on V (G) such that for every
choice of vertices u, v and w with u < v and v < w,
uw ∈ E(G) implies uv ∈ E(G).
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1. G is an interval graph.

2. There exists a linear order < on V (G) such that for every
choice of vertices u, v and w with u < v and v < w,
uw ∈ E(G) implies uv ∈ E(G).

Proof Sketch: 1. ⇒ 2. Let Iu = [u`, ur] and Iv = [v`, vr]. Let G
be an interval graph with an interval model F we define a linear
ordering on V (G) in such a way that u` < v`, or u` = v` and
ur ≤ vr, whenever u < v. It can be proved that such a linear
ordering on V (G) satisfies the condition 2.



Another characterization

Olariu (1991)

For a graph G the following two statements are equivalent:

1. G is an interval graph.

2. There exists a linear order < on V (G) such that for every
choice of vertices u, v and w with u < v and v < w,
uw ∈ E(G) implies uv ∈ E(G).

Proof Sketch: 2. ⇒ 1.. We enumerate the vertices of G as
w1, . . . , wn in such a way that wi < wj whenever i < j. First, we
will prove that G is chordal. It can be easily proved that
[wn, wn−1 . . . , w2, w1] is a perfect vertex elimination scheme.



Another characterization

Olariu (1991)

For a graph G the following two statements are equivalent:

1. G is an interval graph.

2. There exists a linear order < on V (G) such that for every
choice of vertices u, v and w with u < v and v < w,
uw ∈ E(G) implies uv ∈ E(G).

Proof Sketch: Finally it remains to prove that G is a
comparability graph. We define the digraph D in such a way that
V (G) = V (D) and (u, v) ∈ A(D) if and only if u < v and
uv /∈ E(G). Consequently if (u, v) ∈ A(D) and (v, w) ∈ A(D),
then u < w and uw /∈ E(G) because otherwise uv ∈ E(G).�



Definitions and characterizations

I A unit interval graph is an interval graph having an interval
model F such that all intervals in F have the same length.
Such an interval model is called a unit interval model of the
graph.

I A proper interval graph is an interval graph having an interval
model F with no interval properly contained in another
interval. Such an interval model is called a proper interval
model of the graph.

Roberts (1969)

Given an interval graph G the following conditions are equivalent:

1. G is a proper interval graph.

2. G is a unit interval graph

3. G is an interval graph contains no induced claw .



Definitions and characterizations

I A unit interval graph is an interval graph having an interval
model F such that all intervals in F have the same length.
Such an interval model is called a unit interval model of the
graph.

I A proper interval graph is an interval graph having an interval
model F with no interval properly contained in another
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Given an interval graph G the following conditions are equivalent:

1. G is a proper interval graph.

2. G is a unit interval graph

3. G is an interval graph contains no induced claw .



Proof sketch [Bogart & West (1999)]

1. and 2. ⇒ 3. In an interval representation of the claw the
intervals for the three vertices of degree one must be pairwise
disjoint, and so the vertex of degree three contains the interval of
degree one in the meddle.



Proof sketch [Bogart & West (1999)]

3. ⇒ 1. Let G a claw-free interval graph. Since G is claw-free,
there is no pair of vertices v and w such that Iv = [v1, v2] is
properly contained in Iw = [w1, w2] such that there is endpoints in
[w1, v1] and [v2, w2] of intervals that do not intersect Iv. Hence we
can extend Iv past the end of Iw on one end without changing the
graph obtained from the representation. Repeating until no more
pairs of intervals are related by inclusion yields a proper interval
representation.



Proof sketch [Bogart & West (1999)]
1. ⇒ 2. We process the representation from left to right, adjusting
all the intervals to length 1. Let Ix = [a, b] the interval having the
leftmost left endpoint. Let α = a unless Ix contains the right
endpoint of some other interval, in which case let α be the largest
such right endpoint. Hence α < mı́n{a+ 1, b}.



Proof sketch [Bogart & West (1999)]

Now, adjusting the portion representation of [a,+∞) by shrinking
or expanding [α, b] to [α, a+ 1] and translating [b,+∞) to
[a+ 1,∞).�



Proof sketch [Bogart & West (1999)]

Now, adjusting the portion representation of [a,+∞) by shrinking
or expanding [α, b] to [α, a+ 1] and translating [b,+∞) to
[a+ 1,∞).�



Another characterization

Looges & Olariu (1993)

A graph G is a proper interval graph if and only if there exists a
linear ordering on V (G) such that for every choice of
u, v, w ∈ V (G), u < v < w and uw ∈ E(G) implies that
uv ∈ E(G) and vw ∈ E(G).



Proof sketch

⇒ Let Iu = [u`, ur] and Iv = [v`, vr]. Let G be a proper interval
graph with an interval model F we define a linear ordering on
V (G) in such a way that u` < v`, or u` = v` and ur ≤ vr,
whenever u < v. It can be proved that such a linear ordering on
V (G) satisfies the condition of the necessary condition of the
statement.



Proof sketch
⇐ Since the linear ordering on V (G) satisfies the condition of the
linear ordering for interval graph of Olariu’s characterization, in
virtue of Robert’s characterization, it suffices to show that G is a
claw-free graph. Arguing towards a contradiction, suppose that
{a, b, c, d} induces a claw in G being a the vertex of degree three.
It is easy to see that a cannot precede (follow) b, c, d. We can
assume w.o.l.o.g that b precedes a, c, d and d follows a, b, c. Either
case leads to a contradiction.�



Proof sketch
⇐ Since the linear ordering on V (G) satisfies the condition of the
linear ordering for interval graph of Olariu’s characterization, in
virtue of Robert’s characterization, it suffices to show that G is a
claw-free graph. Arguing towards a contradiction, suppose that
{a, b, c, d} induces a claw in G being a the vertex of degree three.
It is easy to see that a cannot precede (follow) b, c, d. We can
assume w.o.l.o.g that b precedes a, c, d and d follows a, b, c. Either
case leads to a contradiction.�



Definitions

I Recall that a comparability graph is a graph having a
transitive orientations of its edges.

I A quasi-transitive orientation of a graph G is an orientation
A(G) of if edges in such a way that if (u, v) ∈ A(G) and
(v, w) ∈ A(G), then u,w ∈ E(G).

I Given a graph G we define G+ as the graph whose vertex set
consists of all ordered pairs (u, v) with uv ∈ E(G), a vertex
(u, v) is adjacent in G+ to (v, u), to any (w, u) such that
vw /∈ E(G) and to any (v, w) such that uw /∈ E(G)



Quasi-transitive orientations

Ghouilà-Houri (1962)

The edges of a graph G can be quasi-transitively oriented if and
only if G+ is a bipartite graph.



Lexicographic-two-coloring of G+

I A graph G whose vertices are 1, 2, . . . , n.

I A two-coloring of G+

1. while there is an uncolored vertex in G+ do

2. assign color A to the lexicographic smallest unclored vertex
(u, v) ∈ G+

3. complete to the unique two-coloring the component
containing (u, v) assigning the color A to those vertices at
even distance from (u, v) and the color B to those vertices at
odd distance from (u, v).



Comparability graph

Hell and Huang (1995)

Let D be a quasi-transitive orientation of a quasi-transitive
orientable graph G in which (u, v) ∈ A(D) just if (u, v) obtains
the color A in the lexicographic-two-coloring of G+. Then D is a
transitive orientation of G.



Comparability graph

Hell and Huang (1995)

Let D be a quasi-transitive orientation of a quasi-transitive
orientable graph G in which (u, v) ∈ A(D) just if (u, v) obtains
the color A in the lexicographic-two-coloring of G+. Then D is a
transitive orientation of G.
Proof sketch: Arguing towards a contradiction suppose that
{u, v, w} forms the smallest ordered triple in the lexicographic
ordering for which the conditions of transitively fails. Suppose,
w.o.l.o.g, that (u, v), (v, w), (w, u) ∈ A(D) and v > w. So (v, w)
was not the first vertex colored A in its connected component.
Suppose that (v′, w′) was the first and so v′ < w′ and {u, v′, w′}
forms an smaller ordered triple than {u, v, w}, and there is an even
length path (v, w) = (v0, w0), (v1, w1), . . . , (v2k, w2k) = (v′, w′) in
G+.



Comparability graph

Hell and Huang (1995)

Let D be a quasi-transitive orientation of a quasi-transitive
orientable graph G in which (u, v) ∈ A(D) just if (u, v) obtains
the color A in the lexicographic-two-coloring of G+. Then D is a
transitive orientation of G.
It can be proved that for each even (u, vi), (vi, wi), (wi, u) ∈ A(D)
and for each odd (u,wi), (wi, vi), (vi, u) ∈ A(G). Therefore,
(u, v2k), (v2k, w2k), (w2k, u) ∈ A(G), contradicting that is
{u, v, w} is the minimum triple with this property.�



Corollary

Ghouilà-Houri (1962)

A graph G is a comparability graph if and only if G is
quasi-transitively orientable

O(m∆) recognizing algorithm

1. Construct G+.

2. While there exists uncolored vertices do color by A the
lexiscographically smallest uncored vertex (u, v) use BFS to
two-color (if possible) the component of G+ which contains
(u, v)

3. If some component could not be two-colored then report that
G is not a comparability graph.

4. Orient the edge uv of G as (u, v) just if (u, v) obtained color
A.
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O(m∆) recognizing algorithm

1. Construct G+.

2. While there exists uncolored vertices do color by A the
lexiscographically smallest uncored vertex (u, v) use BFS to
two-color (if possible) the component of G+ which contains
(u, v)

3. If some component could not be two-colored then report that
G is not a comparability graph.

4. Orient the edge uv of G as (u, v) just if (u, v) obtained color
A.



Local tournament
I A quasi-transitive orientation of a graph G is an orientation
A(G) of if edges in such a way that if (u, v) ∈ A(G) and
(v, w) ∈ A(G), then u,w ∈ E(G).

I Given a graph G we define G∗ as the graph whose vertex set
consists of all ordered pairs (u, v) with uv ∈ E(G), a vertex
(u, v) is adjacent in G∗ to (v, u), to any (u,w) such that
vw /∈ E(G) and to any (w, v) such that uw /∈ E(G)

Hell & Hoang (1995)

The graph G has a local tournament orientation if and only if G∗

is a bipartite graph.
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Proper interval graph

Hell & Hoang (1995)

A graph is a proper interval graph if and only if it is orientable as
an acyclic local tournament.

Proof sketch: ⇒ If F is a proper interval model of G an acyclic
local tournament is obtained by oriented the edge uv as (u, v),
whenever the interval representing u contains the left endpoint of
the interval representing v.
⇐ If D is a local tournament orientation of G, the we can
enumerate the vertices of D as v1, . . . , vn so tat for each i there
exists positive integers k, l such that the vertex vi has inset
{vi−1, . . . , vi−k} and outset {vi+1, . . . , vi+l}. Each vertex vi can

be represented as the interval [j, j + d+j + 1− d+j
d+j +1

], where d+j is

the outdegree of the vertex j.
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Acyclic local tournament

Hoang (1993)

Let G be a proper interval graph and let 1, 2, . . . , n be a vertex
perfect elimination scheme. Let D be the orientation of G if in
which (u, v) ∈ A(D) if (u, v) obtains color A in the lexicographic
two-coloring of G∗. Then D is an acyclic local tournament of G.



Polynomial-time recognition algorithm

1. Rename the vertices of G so that 1, 2, . . . , n is a perfect
vertex elimination scheme. If G does not admit such a PVES,
then report G is not a proper interval graph.

2. Construct G∗.

3. While there exist uncolored vertices do color by A the
lexicographically smallest uncolored vertex (uv) use BFS to
two-color (if possible) the component of G∗ which contains
(u, v).

4. If some component could not be two-colored then report G is
not a proper interval graph.

5. Orient the edge uv as (u, v) if (u, v) obtained color A.

6. If the resulting oriented graph contains a directed cycle then
report that G is not a proper interval graph.

7. Construct a proper interval model.
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