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k-colorability

Given a graph G and a number k , decide whether G is k-colorable.

For k ≤ 2: Just check if G is bipartite (breadth-first search).
Polynomial.
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k-colorability

The k-coloring problem of a graph is NP-complete for every k ≥ 3.

What about restriction to special graph classes?



k-colorability in special graph classes

Polynomial for perfect graphs (Grötschel, Lovász, and
Schrijver 1984).

Polynomial (with simple algorithms) for subclasses of perfect
graphs, like chordal graphs, interval graphs, cographs.

Polynomial for proper circular-arc graphs (Orlin, Bonuccelli,
and Bovel 1981, Shih and Hsu 1989).

NP-complete for circular-arc graphs (Garey, Johnson, Miller,
and Papadimitriou 1980).

NP-complete for P5-free graphs (Kral, Kratochv́ıl, Tuza, and
Woeginger 2001).
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k-colorability in special graph classes (fixed k ≥ 3)

Polynomial for perfect graphs (just check for Kk+1).

k-colorability for fixed k is polynomial for circular-arc graphs
(Garey, Johnson, Miller, and Papadimitriou 1980).

k-colorability for fixed k is linear for proper circular-arc graphs
(Teng and Tucker 1985, Bhattacharya, Hell, and Jing 1996).

NP-complete for planar graphs, even for planar 4-regular
graphs (Dailey 1980).

NP-complete for triangle-free graphs (even for k = 3)
(Maffray and Preissmann 1996)

How about forbidding other subgraphs?
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k-colorability in H-free graphs

A graph is H-free if it does not contain H as an induced subgraph.

Theorem (Král, Kratochv́ıl, Tuza, and Woeginger 2001, Lozin and Kamiński 2007)

If H is a graph that contains a cycle, then k-colorability is
NP-complete in the class of H-free graphs, for k ≥ 3.

And:

Theorem (Holyer 1981, Leven and Galil 1983)

Let F be a forest with a vertex of degree ≥ 3. Then k-colorability
is NP-complete in the class of F -free graphs, for k ≥ 3.

This leads to the study of Pt-free graphs, where Pt is the path on
t vertices.



k-colorability in H-free graphs

A graph is H-free if it does not contain H as an induced subgraph.

Theorem (Král, Kratochv́ıl, Tuza, and Woeginger 2001, Lozin and Kamiński 2007)
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If H is a graph that contains a cycle, then k-colorability is
NP-complete in the class of H-free graphs, for k ≥ 3.

And:

Theorem (Holyer 1981, Leven and Galil 1983)

Let F be a forest with a vertex of degree ≥ 3. Then k-colorability
is NP-complete in the class of F -free graphs, for k ≥ 3.

This leads to the study of Pt-free graphs, where Pt is the path on
t vertices.



k-colorability in Pt-free graphs

Complexity of k-colorability in the class of Pt-free graphs:

k\t 4 5 6 7 8 . . .

3 O(m) [1] O(nα) [4] O(mnα) [5] P [6] ? . . .
4 O(m) [1] P [2] ? NPC [3] NPC . . .
5 O(m) [1] P [2] NPC [3] NPC NPC . . .
6 O(m) [1] P [2] NPC NPC NPC . . .
...

...
...

...
...

...
. . .

[1] Chvátal 1984, Corneil, Perl, and Stewart 1984.
[2] Hoàng, Kamiński, Lozin, Sawada, and Shu 2010.
[3] Huang 2013.
[4] Mellin 2002.
[5] Randerath and Schiermeyer 2004.
[6] B., Chudnovsky, Maceli, Schaudt, Stein, and Zhong 2015.

[recommended lectures] - Golovach, Johnson, Paulusma, and Song, A Survey on
the Computational Complexity of Colouring Graphs with Forbidden Subgraphs
- Hell and Huang, Complexity of coloring graphs without paths and cycles
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Let’s start by chordal graphs

A graph is chordal if it contains no induced Cn, n ≥ 4, that is,
if every cycle of length at least 4 has a chord.

Also called triangulated or rigid circuit.

[recommended lecture] Blair and Peyton, An introduction to
chordal graphs and clique trees



Let’s start by chordal graphs

A graph is chordal if it contains no induced Cn, n ≥ 4, that is,
if every cycle of length at least 4 has a chord.

Also called triangulated or rigid circuit.

[recommended lecture] Blair and Peyton, An introduction to
chordal graphs and clique trees



Let’s start by chordal graphs

A graph is chordal if it contains no induced Cn, n ≥ 4, that is,
if every cycle of length at least 4 has a chord.

Also called triangulated or rigid circuit.

[recommended lecture] Blair and Peyton, An introduction to
chordal graphs and clique trees



Let’s start by chordal graphs

A graph is chordal if it contains no induced Cn, n ≥ 4, that is,
if every cycle of length at least 4 has a chord.

Also called triangulated or rigid circuit.

[recommended lecture] Blair and Peyton, An introduction to
chordal graphs and clique trees



Perfect elimination ordering

A vertex v is simplicial if N[v ] induces a complete subgraph
on G .

An ordering v1, v2, . . . , vn of the vertices of a graph G is a
perfect elimination ordering if, for every 2 ≤ i ≤ n − 2 vi is
simplicial in G [vi , vi+1, . . . , vn].



Perfect elimination ordering

Theorem (Dirac, 1961)

Every chordal graph has a simplicial vertex. If it is not complete,
then it has two non-adjacent simplicial vertices.

Theorem (Fulkerson and Gross, 1965)

A graph is chordal if and only if it has a PEO.
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Algorithmic problems in chordal graphs

How can we solve maximum clique and minimum coloring on
chordal graphs?
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Algorithmic problems in chordal graphs
Let v be a simplicial vertex:

either v belongs to the maximum clique or not... but v belongs to
just one maximal clique! so...

ω(G ) = max{|N[v ]|, ω(G − v)}

Note: there is a linear number of maximal cliques!

We can extend an optimum coloring of G − v to G without adding
colors unless χ(G − v) < d(v). But in that case we add one new
color and, as N[v ] is a clique, it is optimum. So...

χ(G ) = max{|N[v ]|, χ(G − v)}

Chordal graphs are perfect:
For every chordal graph G , ω(G ) = χ(G ), and it holds also for the
induced subgraphs because the class is hereditary.
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Interval graphs

An interval graph is the intersection graph of intervals in a
line.

They are a subclass of chordal graphs.

Which are the perfect elimination orderings?

The right-end ordering of the vertices of an interval graph is a
perfect elimination ordering.
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Circular-arc graphs

A circular-arc graph is the intersection graph of arcs on a
circle.

Model for scheduling problems where there in no “night stop”.

k-coloring (fixed k): polynomial (Garey, Johnson, Miller, and
Papadimitriou 1980).

Coloring: NP-complete (Garey, Johnson, Miller, and
Papadimitriou 1980).
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Proper circular-arc graphs

A circular-arc graph is proper if it admits a model with no arc
contained in another.

Coloring: polynomial (Orlin, Bonuccelli, and Bovel 1981, Shih
and Hsu 1989).

k-coloring (fixed k): linear (Teng and Tucker 1985,
Bhattacharya, Hell, and Jing 1996).

The algorithm by Orlin, Bonuccelli, and Bovel proves first some
theoretical properties on the optimal solutions for coloring proper
circular-arc graphs, and then models the problem as an integer
programming one, and observes that the model corresponds to a
shortest path problem in an auxiliary graph.
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Cographs

A cograph is a graph with no induced P4 (chordless path on
four vertices).

Property: If G is a non-trivial cograph, then either G or Ḡ is
non-connected.
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Cographs
In the first case, G is the union of two smaller cographs
(G = G1 ∪ G2).

In the second case, G is the join of two smaller cographs
(G = G1 ∨ G2).
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Algorithmic problems in cographs

Let G0 be the trivial graph. For coloring,
χ(G0) = 1,
χ(G1 ∪ G2) = max{χ(G1), χ(G2)}, and
χ(G1 ∨ G2) = χ(G1) + χ(G2).

To compute a maximum clique, ω(G0) = 1,
ω(G1 ∪ G2) = max{ω(G1), ω(G2)}, and
ω(G1 ∨ G2) = ω(G1) + ω(G2).

In particular, it can be seen that cographs are
perfect.
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Another algorithm for coloring....

The greedy algorithm based on picking maximum stable sets works for
cographs!! (even picking just maximal ones!)

Lemma

Let G be a cograph. Then every maximal stable set of G intersects every
maximal clique of G .

Proof. By induction, using the decomposition. For the trivial graph is
true. If G = G1 ∪G2, every maximal stable set is composed by a maximal
stable set of G1 and a maximal stable set of G2, and by inductive
hypothesis the part in Gi intersects all the maximal cliques of Gi , for
i = 1, 2, and these are exactly the maximal cliques of G . If G = G1 ∨ G2,
every maximal stable set of G is either a maximal stable set of G1 or a
maximal stable set of G2, but every maximal clique is composed by a
maximal clique of G1 and a maximal clique of G2, so by inductive
hypothesis the stable set intersects the clique, either in its G1-part or in
its G2-part. �

Using the lemma, the result follows by induction on ω(G ).
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Yet one more....

The greedy algorithm (give to v the first color not used by a
neighbor) also works for cographs for any vertex order!!

Just note that the set of vertices receiving color i is a maximal
stable set in the subgraph of G induced by the vertices receiving
color at least i .
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The list-coloring problem

In order to take into account particular constraints arising in
practical settings, more elaborate models of vertex coloring have
been defined in the literature. One of such generalized models is
the list-coloring problem, which considers a prespecified set of
available colors for each vertex.



The list-coloring problem

The list-coloring problem is NP-complete for perfect graphs,
and is also NP-complete for many subclasses of perfect
graphs, including cographs, proper interval graphs, and
bipartite graphs.

Trees and complete graphs are two classes of graphs where
the list-coloring problem can be solved in polynomial time. In
the first case it can be solved using dynamic programming
techniques (Jansen and Scheffler, 1997). In the second case,
the problem can be reduced to the maximum matching
problem in bipartite graphs.



Back to 3-coloring P7-free graphs, a bit more general: list
3-coloring P7-free graphs

We actually solve the list 3-colorability problem, where every vertex
is equipped with a subset of {1, 2, 3} of admissible colors.

It is not always the case that an algorithm for k-coloring can be
generalized to list k-coloring: in the class of {P6,C5}-free graphs
for example, 4-coloring can be solved in polynomial time
(Chudnovsky, Maceli, Stacho and Zhong, 2014), while the list
4-coloring problem is NP-complete (Huang, Johnson and
Paulusma, 2014).



List 3-coloring P7-free graphs

Theorem (BCMSSZ, 2015)

Given a P7-free graph G, the list 3-coloring problem can be
decided, and a coloring can be found, in O(n21(n + m)) time.

The algorithm is based on structural analysis, controlled
enumeration, and reduction to 2-SAT, that can be solved in
O(m + n) time (Vizing 1976, Erdős, Rubin and Taylor, 1979,
Aspvall, Plass and Tarjan, 1979).
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From list 3-coloring to 2-list-coloring

k-list-coloring: all the lists are of size at most k

list k-coloring: the union of the lists is contained in {1, . . . , k}
(more restrictive)

We have a list 3-coloring instance and we want to reduce it to a
(polynomial) family of 2-list-coloring instances, because
2-list-coloring reduces to 2-SAT.

(vr ∨ vb)

wb

(¬xb ∨ ¬yb)



List 3-coloring P7-free graphs

We first reduce the problem to a polynomial number of
instances of a variation of the 2-list-coloring problem, where
we have a family of sets of vertices and we ask each set to be
monochromatic.

We can reduce that problem to 2-list-coloring by contracting
each set into a single vertex whose list is the intersection of
the lists (we don’t need to keep any property of the graph to
solve 2-list-coloring).



Some considerations

We will disregard the original lists L∗ until the end, and then
on each 2-list-coloring instance we will intersect the current
list of each vertex with L∗.

We will also, during the process, update the lists of neighbors
of a vertex using BFS just from some vertices and avoiding
some special sets.

In that way, during the process, the number of colors on the
list of a vertex tells us something about its neighbors in the
graph.
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A useful tool

A dominating set is a set of vertices S such that
S ∪ N(S) = V (G ). We will use the following theorem.

Theorem (Camby and Schaudt, 2014)

For all t ≥ 3, any connected Pt-free graph has a connected
dominating set whose induced subgraph is either Pt−2-free, or
isomorphic to Pt−2.

Corollary

Every connected P7-free graph has either a connected
2-dominating set of size at most 3 or a complete subgraph of 4
vertices. The set or the subgraph can be found in O(n3m) time,
given an n-vertex graph.
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Nested dominating sets



Main idea

The idea is to start with those 3 vertex as a seed, and for every
possible coloring of them, branch into instances such that each
instance has a strictly greater seed, the vertices of the seed have a
fixed color, and iterate a bounded number of times until obtaining
a polynomial number of instances such that, for each of them, the
vertices outside the seed neighbourhood having lists of size 3 are a
stable set.

We will do that in such a way that there is a coloring for the
original instance if and only there is a coloring for at least one of
the new (refined) instances.
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Growing the seed

For each color i , we compute the set of paths x − y − z with
with x ∈ N(S), |L(y)| = 3 and z /∈ S ∪ N(S), and such that
i /∈ L(x).

We will order the paths non-decreasingly by the number of
vertices w (if any) such that w − x − y − z is an induced path.

We can compute and sort the paths in O(n4) time, and this
order of the paths induces an order on the set of vertices y .

We then enumerate some partial colorings of those paths and
update the lists and the seed in order to create the refined
instances.

We iterate this process twice, and prove that after that no
such path exists.
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Growing the seed

O(n) instances



Growing the seed

O(n2) instances



Growing the seed

Combining each of the possibilities for each of the 3 types of
vertices in N(S) gives O(n2)× O(n2)× O(n2) = O(n6) instances.



The knockout

We prove that two steps of the procedure are enough, so we have
in total O(n6)× O(n6) = O(n12) instances, that we intersect with
the original lists L∗. After applying some preprocessing rules, we
are under the assumptions of the following lemma.

Lemma

Let G be a connected P7-free graph with a list L(v) ⊆ {1, 2, 3} for
each vertex v. Let S be a seed of G such that the set X of vertices
having lists of size 3 is stable and anticomplete to
V (G ) \ (S ∪ N(S) ∪ X ). Then we can decide whether G has a
coloring for L, and find it, in O(n9(n + m)) time.

Since we have O(n12) instances to consider, the total running time
amounts to O(n21(n + m)).

The proof relies on technical lemmas on types of colorings.
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Sketches of the types of colorings

Type A coloring w.r.t blue: O(n3) instances

Combining the O(n3) instances w.r.t the 3 colors, this gives O(n9)
instances to solve.



Sketches of the types of colorings

Type B coloring w.r.t blue: O(n2) instances

Combining the O(n3) instances w.r.t the 3 colors, this gives O(n9)
instances to solve.
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Type C coloring w.r.t blue: O(n2) instances

Combining the O(n3) instances w.r.t the 3 colors, this gives O(n9)
instances to solve.
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Type C coloring w.r.t blue: O(n2) instances

Combining the O(n3) instances w.r.t the 3 colors, this gives O(n9)
instances to solve.



Triangle-free case

Theorem (BCMSSZ, 2015)

Given a {P7,triangle}-free graph G, the list 3-coloring problem can
be decided, and a coloring can be found, in O(n5(n + m)) time. If
G is bipartite, then the complexity drops to O(n2(n + m)).

The algorithm is again based on a structural analysis, controlled
enumeration, and reduction to 2-SAT, but the ideas and proofs get
simpler.



Triangle-free case

We will show how to solve 3-coloring, and how to adapt it to the
list version. We thank Daniël Paulusma for pointing out to us that
the algorithm for the cases of the C7 and the C5 could be trivially
adapted to list 3-coloring.

We (quickly) identify three cases:

the graph is bipartite, so the 3-coloring is trivial (we will deal
with the list 3-coloring separately);

the graph has no induced C5 but an induced C7: in this case
the graph, after identifying false twins, is C7 (so the problem
and its list version are easy);

the graph contains an induced C5: this is the interesting case.



(Triangle,C5)-free with an induced C7

For list 3-coloring we identify, on each class of false twins, those
vertices having the same list. The obtained graph has at most 49
vertices.



(Triangle,C5)-free with an induced C7

For list 3-coloring we identify, on each class of false twins, those
vertices having the same list. The obtained graph has at most 49
vertices.



Triangle-free with an induced C5

First we determine the core structure of the input graph, for each
(valid) 3-coloring of the C5.



Outside its core structure, the graph is bipartite.



The non-trivial components outside the core structure are
well-behaved with respect of the sets of the core structure.



If we have two vertices of different color in the common
neighborhood of all the edges (in the core part), each vertex of
those edges has at most two colors left.



We enumerate then some partial colorings of the core structure
that extend to every possible coloring of the core.



Triangle-free with an induced C5

First we enumerate some partial colorings of the sets of the
core structure.

These are determined by the nested neighborhoods of the
non-trivial components in each of the “mixed” sets.

Each partial coloring leaves an instance in which every vertex
has at most two admissible colors, or there is a color missing
in the list of all its neighbors, and it can be safely use it.

We reduce then the instance to a 2-SAT problem, that can be
solved in O(n + m) time.

As we have O(n5) instances, the overall complexity is
O(n5(n + m)).
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List 3-coloring bipartite graphs

We first preprocess the graph by eliminating dominated
vertices with lists of size 3 (here dominated means v and w
non adjacent, N(v) ⊆ N(w)). We leave just one copy of false
twins sets.

Then we either find two vertices such that every vertex in the
graph having a list of size 3 is adjacent to one of them (we
can color those two vertices to get 2-SAT instances),

or we find an induced C6 (in linear time) with three
independent vertices having a list of size 3.

We define sets of vertices with respect to their neighbors in
the C6, similarly to the C5 case, and prove some structural
properties.
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List 3-coloring bipartite graphs

We define four types of colorings of the C6.

We show first that we can test if a type 1 coloring of a cycle
can be extended to the whole graph in O(n + m) time.

Next, we deal with the “parity” case in which all vertices with
lists of size 3 have the same parity, and there we can test type
2 or type 3 colorings in O(n + m) time.

The whole parity case can be reduced to testing O(n) times
type 1, type 2 or type 3 colorings, giving a complexity of
O(n(n + m)).

In the general case, testing type 2 or type 3 colorings reduces
to the parity case (O(n(n + m))).

The general problem can be reduced to testing O(n) times if
type 1, type 2 or type 3 colorings, giving a complexity of
O(n2(n + m)).
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We define four types of colorings of the C6.

We show first that we can test if a type 1 coloring of a cycle
can be extended to the whole graph in O(n + m) time.

Next, we deal with the “parity” case in which all vertices with
lists of size 3 have the same parity, and there we can test type
2 or type 3 colorings in O(n + m) time.

The whole parity case can be reduced to testing O(n) times
type 1, type 2 or type 3 colorings, giving a complexity of
O(n(n + m)).

In the general case, testing type 2 or type 3 colorings reduces
to the parity case (O(n(n + m))).

The general problem can be reduced to testing O(n) times if
type 1, type 2 or type 3 colorings, giving a complexity of
O(n2(n + m)).



Open problems

Is there a t such that 3-colorability is NP-complete in Pt-free
graphs?

Is k-colorability FPT in the class of P5-free graphs?

Is 4-colorability poly-time solvable in P6-free graphs?

Is list 3-colorability poly-time solvable in P8-free bipartite
graphs?


