Medidas Repetidas

Este es un problema que puede ser bastante complejo y es importante distinguir el diseño con el que estemos trabajando para tratarlo adecuadamente.

Diferentes modelos surgen de acuerdo a los distintos supuestos y perspectivas que se pueden realizar llevando a distintas preguntas posibles, caracterizaciones y por ende a distintos métodos para tratar cada caso.

Algunos de estos modelos reciben distintos nombres según la bibliografía: modelos longitudinales, efectos aleatorios, medidas repetidas, etc. y son casos particulares del modelo lineal con efectos mixtos. La terminología no es universal.

Vamos a ver un ejemplo muy sencillo usando un modelo lineal y combinándolo con medidas repetidas y efectos aleatorios.

Las medidas repetidas se refieren a que a un individuo o unidad experimental se lo mide varias veces.

Supongamos que en un estudio participan 3 individuos y que a cada participante se le realizan 4 preguntas.

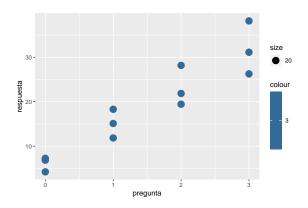
- 1. Asumimos que cada participante es elegido al azar de una población.
- 2. Cada participante responde las preguntas de acuerdo a su puntaje, que seguramente tiene una escala personal.

```
> setwd("C:\\Users\\Ana\\Dropbox\\Ana\\GLM\\2019\\Doctex")
```

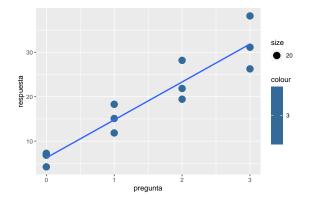
- > ejemplo<- read.table("toyexample.txt",header=T)</pre>
- > head(ejemplo)

	participante	eaaa	pregunta	respuesta
1	p1	32	0	6.840733
2	p1	32	1	15.103398
3	p1	32	2	21.854398
4	p1	32	3	31.133745
5	p2	38	0	7.258445
6	p2	38	1	18.296092

Puntos



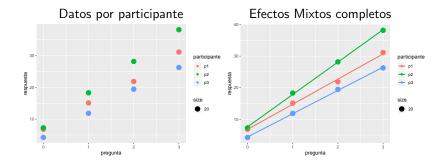
Ajuste Común: olvidando las repeticiones!!!



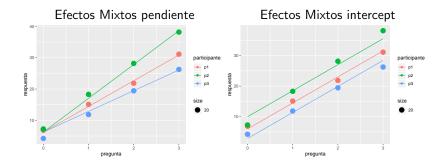
Distinguiendo a los participantes...



Distinguiendo a los participantes...



Distinguiendo a los participantes...



Modelo Simple: inapropiado

No se considera ningún agrupamineto en los datos:

$$r_{si} = \beta_0 + \beta_1 q_i + e_{si}$$

 $e_{si} \sim N(0, \sigma^2)$

En general los datos con estructura como los que tenemos suelen tener para cada individuo una latencia que rompe con el supuesto de independencia.

Modelo con offset

Podemos expandir el modelo teniendo en cuenta esto e incorporando un offset para cada individuo:

$$\begin{array}{rcl} \textit{r}_{\textit{si}} & = & \beta_0 + S_{0\textit{s}} + \beta_1 q_i + e_{\textit{si}} \\ S_{0\textit{s}} & \sim & \textit{N}\left(0, \tau_{00}^2\right) \\ e_{\textit{si}} & \sim & \textit{N}\left(0, \sigma^2\right) \end{array}$$

 β_0 y β_1 : efectos fijos, se asumen constantes de un experimento a otro

 S_{0s} : efectos aleatorios, en otro experimento tendríamos otra muestra de sujetos y por lo tanto otra realización de S_{0s} .

En este caso particular: intercepts aleatorias.

 τ_{00}^2 : parámetro del efecto aleatorio

Modelo Mixto con intercept y pendiente aleatorias

Podemos expandir aún más el modelo de manera de permitir que cada participante tenga su pendiente y su intercept:

$$r_{si} = \beta_{0} + S_{0s} + (\beta_{1} + S_{1s}) q_{i} + e_{si}$$

$$(S_{0s}, S_{1s}) \sim N\left(0, \begin{bmatrix} \tau_{00}^{2} & \rho \tau_{00} \tau_{11} \\ \rho \tau_{00} \tau_{11} & \tau_{11}^{2} \end{bmatrix}\right)$$

$$e_{si} \sim N(0, \sigma^{2})$$

Modelo Mixto con intercept y pendiente aleatorias

Podemos expandir aún más el modelo de manera de permitir que cada participante tenga su pendiente y su intercept:

$$r_{si} = \beta_{0} + S_{0s} + (\beta_{1} + S_{1s}) q_{i} + e_{si}$$

$$(S_{0s}, S_{1s}) \sim N\left(0, \begin{bmatrix} \tau_{00}^{2} & \rho \tau_{00} \tau_{11} \\ \rho \tau_{00} \tau_{11} & \tau_{11}^{2} \end{bmatrix}\right)$$

$$e_{si} \sim N(0, \sigma^{2})$$

¿Cómo sería el modelo para el modelo mixto con pendiente aleatoria?


```
> attach(eiemplo)
> library(lme4)
> model_in <- lmer(respuesta ~ pregunta + (1 | participante), data=ejemplo)
> summary(model in)
Linear mixed model fit by REML ['lmerMod']
Formula: respuesta ~ pregunta + (1 | participante)
  Data: ejemplo
REML criterion at convergence: 50.8
Scaled residuals:
    Min
         10 Median
                               30
                                       Max
-1.53166 -0.36381 0.07729 0.54039 1.48095
Random effects:
Groups
             Name
                       Variance Std.Dev.
participante (Intercept) 13.491
                                3.673
Residual
                         3.118 1.766
Number of obs: 12, groups: participante, 3
Fixed effects:
           Estimate Std. Error t value
(Intercept) 6.2510
                       2.2857 2.735
pregunta 8.5330 0.4559 18.717
Correlation of Fixed Effects:
        (Intr)
pregunta -0.299
```

```
> model_sl <- lmer(respuesta ~ pregunta + (pregunta - 1 | participante), data=ejemplo)
> summary(model_s1)
Linear mixed model fit by REML ['lmerMod']
Formula: respuesta ~ pregunta + (pregunta - 1 | participante)
  Data: ejemplo
REML criterion at convergence: 43.3
Scaled residuals:
           1Q Median 3Q Max
-1.8598 -0.4903 0.2170 0.5545 1.1481
Random effects:
        Name
Groups
                    Variance Std.Dev.
participante pregunta 4.542 2.131
Residual
                     1.192 1.092
Number of obs: 12, groups: participante, 3
Fixed effects:
           Estimate Std. Error t value
(Intercept) 6.2510 0.5274 11.852
pregunta 8.5330 1.2624 6.759
Correlation of Fixed Effects:
        (Intr)
pregunta -0.179
```

```
> model_insl <- lmer(respuesta ~ pregunta + (1 + pregunta | participante), data=ejemplo)
> summarv(model insl)
Linear mixed model fit by REML ['lmerMod']
Formula: respuesta ~ pregunta + (1 + pregunta | participante)
  Data: ejemplo
REML criterion at convergence: 33.2
Scaled residuals:
    Min
            10 Median
                               30
                                       Max
-1.66688 -0.40683 0.06808 0.60233 0.98101
Random effects:
Groups
             Name
                       Variance Std.Dev. Corr
participante (Intercept) 2.5870 1.608
             pregunta 2.2788 1.510
                                        0.89
Residual
                        0.2683 0.518
Number of obs: 12, groups: participante, 3
Fixed effects:
           Estimate Std. Error t value
(Intercept) 6.2510
                      0.9617 6.500
pregunta
        8.5330
                    0.8818 9.677
Correlation of Fixed Effects:
        (Intr)
pregunta 0.818
```

Penalización en Regresión Logística

Cuando el número de covariables (p) es grande relativamente respecto del tamaño muestral (n) pueden presentarse algunos problemas como los siguientes:

- los estimadores de los coeficientes pueden tener un incremento en la varianza.
- 2. Tiende a haber sobreajuste.
- 3. Si p > n (por ejemplo en microarrays), el EMV no existe.

¿Qué podemos hacer?

 ${\it Cuando la relación} \ p/n \ {\it es grande}, \\ {\it una estrategia es apostar a un modelo ralo o esparso} \\ {\it esto es asumir que solo unas pocas} \ k \ {\it covariables son relevantes}$

Betting on sparcity!

Penalización en Regresión Logística

El EMV minimiza la deviance:

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n d\left(y_i, \mathbf{x}_i^t \boldsymbol{\beta}\right)$$

Cuando la relación p/n es grande, una forma popular de reducir el efecto del sobreajuste y la variabilidad es agregando un término de penalización:

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n d\left(y_i, \mathbf{x}_i^t \boldsymbol{\beta}\right) + I_{\lambda}(\boldsymbol{\beta})$$

donde I_{λ} es una función no negativa que depende de un vector de parámetros de ajuste.

Esencialmente, I_{λ} restringe los valores de los estimadores, de manera que estos se muevan en un rango más aceptable.

Penalizaciones

Existen distintas opciones para I_{λ} . Entre las más usadas figuran:

- Penalización Ridge o ℓ_2 : $I_{\lambda}(\beta)=(\lambda/2)\|\beta\|_2^2=(\lambda/2)\sum_{i=1}^p\beta_i^2$
- Penalización LASSO o ℓ_1 : $I_{\lambda}(\beta) = \lambda \|\beta\|_1 = \lambda \sum_{i=1}^p |\beta_i|$
- Penalización Elastic Net: $I_{\lambda}(\beta) = \lambda \left\{ \alpha \|\beta\|_1 + (1-\alpha)/2 \|\beta\|_2^2 \right\}$

donde $(\lambda, \alpha) \in \mathbb{R}_{\geq 0} \times [0, 1]$

Observaciones

- λ controla el impacto del término de regularización. Si $\lambda=0$, el estimador coincide con el EMV, es decir la penalización no tiene efecto. Si $\lambda\to\infty$ el impacto de $I_\lambda(\beta)$ aumenta, forzando a los coeficientes a ser cada vez más pequeños.
- La selección de λ es en ese sentido crítica y se realiza por convalidación cruzada.
- No se penaliza la intercept.
- Es importante que cada una de las vaiables esté estandarizada para que todas tengan promedio 0 y la misma escala 1.
- Penalización Ridge reduce el sobreajuste y es adecuada cuando hay colinealidad entre las covariables, pero no selecciona variables, es decir con alta probabilidad las estimaciones de todas las coordenadas son no nulas.
- Penalización LASSO sí selecciona variables con alta probabilidad.
- Penalización Elastic Net: permite realizar selección de variables si $\alpha>0$ y arroja mejores resultados que la penalización Lasso cuando hay un alto grado de colinealidad entre las variables.

172/173

Penalización en Regresión Logística

Veamos en R algunos ejemplos

